Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Domino Data Science Platform comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
2nd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (4th)
Domino Data Science Platform
Ranking in Data Science Platforms
16th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 4.6%, down from 7.6% compared to the previous year. The mindshare of Domino Data Science Platform is 2.3%, down from 2.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker4.6%
Domino Data Science Platform2.3%
Other93.1%
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Python AWS & AI Expert at a tech consulting company
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
AS
Machine Learning Engineer at Unemployed
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of Amazon SageMaker is SageMaker Studio."
"The technical support of the tool was good."
"The tool has made client management easier where patients need to upload their health records and we can use the tool to understand details on treatment date, amount, etc."
"The most valuable feature of Amazon SageMaker for me is the model deployment service."
"The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use."
"The most valuable features in Amazon SageMaker are its AutoML, feature store, and automated hyperparameter tuning capabilities."
"SageMaker offers functionalities like Jupyter Notebooks for development, built-in algorithms, model tuning, and options to deploy models on managed infrastructure."
"The product aggregates everything we need to build and deploy machine learning models in one place."
"The scalability of the solution is good; I'd rate it four out of five."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
 

Cons

"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"Lacking in some machine learning pipelines."
"The documentation must be made clearer and more user-friendly."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"Amazon might need to emphasize its capabilities in generative models more effectively."
"The solution needs to be cheaper since it now charges per document for extraction."
"There is room for improvement in the collaboration with serverless architecture, particularly integration with AWS Lambda."
"The user interface (UI) and user experience (UX) of SageMaker and AWS, in general, need improvement as they are not intuitive and require substantial time to learn how to use specific services."
"The predictive analysis feature needs improvement."
"The deployment of large language models (LLMs) could be improved."
 

Pricing and Cost Advice

"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"Databricks solution is less costly than Amazon SageMaker."
"SageMaker is worth the money for our use case."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"Amazon SageMaker is a very expensive product."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"The product is expensive."
"On average, customers pay about $300,000 USD per month."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
880,844 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
University
6%
Financial Services Firm
39%
Insurance Company
8%
Manufacturing Company
8%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise16
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
 

Also Known As

AWS SageMaker, SageMaker
Domino Data Lab Platform
 

Interactive Demo

 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Find out what your peers are saying about Amazon SageMaker vs. Domino Data Science Platform and other solutions. Updated: December 2025.
880,844 professionals have used our research since 2012.