Databricks and Amazon SageMaker compete in the data analytics and machine learning platform category. Databricks seems to have the upper hand in terms of flexible integration and performance optimization features.
Features: Databricks offers scalable Spark clusters, a versatile notebook environment, and support for multiple programming languages, enhancing big data and machine learning capabilities. Delta data format ensures fast performance and built-in optimization recommendations streamline analytics. Amazon SageMaker provides excellent AWS integration, diverse built-in algorithms, and features like Autopilot for automated processes, serverless execution, and easy API deployment, catering to non-coding users effectively.
Room for Improvement: Databricks should improve Git integration, expand machine learning libraries, and provide advanced data visualization. Additional cloud platform support and better BI tool integration are needed alongside more intuitive notebook usability. SageMaker could improve its pricing model, enhance documentation, and provide better GPU model integration and hyperparameter tuning suggestions.
Ease of Deployment and Customer Service: Databricks is mainly deployed on public clouds, offering flexibility with hybrid setups, though support can be inconsistent. SageMaker is available on public clouds, with satisfactory technical support, though users seek more comprehensive documentation and timely responses.
Pricing and ROI: Databricks pricing varies, with a pay-as-you-go model benefiting cloud users, providing positive ROI due to efficient data processing. SageMaker faces criticism for high costs, especially with adding resources, but costs are often justified when fully utilizing the AWS ecosystem.
The return on investment varies by use case and offers significant value in revenue increases and cost saving capabilities, especially in real time fraud detection and targeted advertisements.
For a lot of different tasks, including machine learning, it is a nice solution.
When it comes to big data processing, I prefer Databricks over other solutions.
The technical support from AWS is excellent.
The support is very good with well-trained engineers.
The response time is generally swift, usually within seven to eight hours.
Whenever we reach out, they respond promptly.
As of now, we are raising issues and they are providing solutions without any problems.
The availability of GPU instances can be a challenge, requiring proper planning.
It works very well with large data sets from one terabyte to fifty terabytes.
Amazon SageMaker is scalable and works well from an infrastructure perspective.
The patches have sometimes caused issues leading to our jobs being paused for about six hours.
Databricks is an easily scalable platform.
There are issues, but they are easily detectable and fixable, with smooth error handling.
I rate the stability of Amazon SageMaker between seven and eight.
They release patches that sometimes break our code.
Although it is too early to definitively state the platform's stability, we have not encountered any issues so far.
Cluster failure is one of the biggest weaknesses I notice in our Databricks.
Having all documentation easily accessible on the front page of SageMaker would be a great improvement.
This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background.
Integration of the latest machine learning models like the new Amazon LLM models could enhance its capabilities.
Adjusting features like worker nodes and node utilization during cluster creation could mitigate these failures.
We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly.
We use MLflow for managing MLOps, however, further improvement would be beneficial, especially for large language models and related tools.
The cost for small to medium instances is not very high.
For a single user, prices might be high yet could be cheaper for user-managed services compared to AWS-managed services.
The pricing can be up to eight or nine out of ten, making it more expensive than some cloud alternatives yet more economical than on-premises setups.
It is not a cheap solution.
SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project.
They offer insights into everyone making calls in my organization.
The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models.
Databricks' capability to process data in parallel enhances data processing speed.
The platform allows us to leverage cloud advantages effectively, enhancing our AI and ML projects.
The notebooks and the ability to share them with collaborators are valuable, as multiple developers can use a single cluster.
Amazon SageMaker is a fully-managed platform that enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.
Databricks is utilized for advanced analytics, big data processing, machine learning models, ETL operations, data engineering, streaming analytics, and integrating multiple data sources.
Organizations leverage Databricks for predictive analysis, data pipelines, data science, and unifying data architectures. It is also used for consulting projects, financial reporting, and creating APIs. Industries like insurance, retail, manufacturing, and pharmaceuticals use Databricks for data management and analytics due to its user-friendly interface, built-in machine learning libraries, support for multiple programming languages, scalability, and fast processing.
What are the key features of Databricks?
What are the benefits or ROI to look for in Databricks reviews?
Databricks is implemented in insurance for risk analysis and claims processing; in retail for customer analytics and inventory management; in manufacturing for predictive maintenance and supply chain optimization; and in pharmaceuticals for drug discovery and patient data analysis. Users value its scalability, machine learning support, collaboration tools, and Delta Lake performance but seek improvements in visualization, pricing, and integration with BI tools.
We monitor all Data Science Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.