Try our new research platform with insights from 80,000+ expert users

Azure OpenAI vs Google Vertex AI comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure OpenAI
Ranking in AI Development Platforms
1st
Average Rating
7.8
Reviews Sentiment
6.6
Number of Reviews
34
Ranking in other categories
No ranking in other categories
Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
6.7
Number of Reviews
12
Ranking in other categories
AI Infrastructure (1st)
 

Mindshare comparison

As of July 2025, in the AI Development Platforms category, the mindshare of Azure OpenAI is 11.0%, down from 20.2% compared to the previous year. The mindshare of Google Vertex AI is 11.8%, down from 21.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Rafael Keller - PeerSpot reviewer
Creates effective scheduling agents with responsive AI capabilities
I am using it to create agents to schedule appointments for clinics and professionals in general. It serves both small and major companies. The primary use case involves creating agents Its ability to understand and respond well to queries, including language translation for clients, is…
Hamada Farag - PeerSpot reviewer
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I would rate it a nine out of ten."
"OpenAI integrates seamlessly with the broader Microsoft Azure ecosystem, and that provides synergies with the other solutions. This integration makes it much easier to build solutions."
"You just have to write accurate prompts according to your requirements, and the solution gives very good results."
"The high precision of information extraction is the most valuable feature."
"The most valuable feature of Azure OpenAI stems from the GPT-3.5 models it provides to its users."
"GPT was useful for our projects."
"Azure OpenAI is used as chat services, allowing me to replace human tasks with analytical capabilities."
"My goal was to create an experience where project managers don't have to read through entire documents. Instead, they can ask a question and receive relevant point analysis. This analysis identifies the document and specific section where the information resides. Previously, users had to rely on these document references. Now, Azure OpenAI enhances the experience by providing the answer directly in the user's own language, relevant to their context."
"Vertex comes with inbuilt integration with GCP for data storage."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"It provides the most valuable external analytics."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"The support is perfect and fantastic."
 

Cons

"I have found the tool unreliable in certain use cases. I aim to enhance the system's latency, particularly in responding to calls. Occasionally, calls don't respond, so I want to improve reliability."
"I faced one issue with Azure OpenAI: My customer wanted more clarity on the pricing. They were not able to get proper answers from the documentation or the pricing calculator. I suggest that Microsoft maintain standardization in the pricing details published in the documentation and the pricing calculator."
"The product features themselves are fine. However, with Microsoft scaling the service so much, the support structure needs to keep pace. When solving complex issues, the process of interacting with Microsoft can be quite time-consuming."
"The product must improve its dashboards."
"One area for improvement is providing more flexibility in configuration and connectivity with external tools."
"The main issue with Azure OpenAI is the inconsistency in output. We have a set template instruction, and it should generate within those parameters without any creativity because it's meant for regulatory authoring documents."
"Maybe with the next release, the response will be more precise and more human-like."
"The UI could be a little easier."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"It takes a considerable amount of time to process, and I understand the technology behind why it takes this long, but this is something that could be reduced."
"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"I'm not sure if I have suggestions for improvement."
"I think the technical documentation is not readily available in the tool."
 

Pricing and Cost Advice

"Regarding pricing and licensing, it's a bit complex due to the minimum purchase requirement for PTO units. We're evaluating the best approach between PTE and pay-as-you-go models. Our organization is cautious about committing to PTE due to the fixed bandwidth reservation, while pay-as-you-go doesn't offer enough flexibility. We're discussing these matters with legal teams to ensure compliance and data security."
"The cost is quite high and fixed."
"The tool costs around 20 dollars a month."
"It's a token-based system, so you pay per token used by the model."
"The platform offers a flexible pricing model which depends on the features and capabilities we utilize."
"The pricing is acceptable, and it's delivering good value for the results and outcomes we need."
"The cost structure depends on the volume of data processed and the computational resources required."
"According to the negotiations taking place and the contract, there is a need to make either monthly or yearly payments to use the solution."
"The solution's pricing is moderate."
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"The price structure is very clear"
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
861,170 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
14%
Computer Software Company
13%
Manufacturing Company
11%
Educational Organization
6%
Computer Software Company
13%
Financial Services Firm
12%
Manufacturing Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Azure OpenAI?
The product is easy to integrate with our IT workflow.
What is your experience regarding pricing and costs for Azure OpenAI?
In the past, the primary expense involved token limitations which constrained scaling. Recent iterations have increased token allowances, mitigating some challenges associated with concurrent user ...
What needs improvement with Azure OpenAI?
Azure ( /products/microsoft-azure-reviews ) could significantly benefit from including more LLM models apart from OpenAI, as I often need to switch clouds when a model doesn't meet my requirements....
What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
I'm not sure if I have suggestions for improvement. Based on my comparison between the two, Vertex has various additional functionalities that Azure doesn't provide.
 

Overview

Find out what your peers are saying about Azure OpenAI vs. Google Vertex AI and other solutions. Updated: June 2025.
861,170 professionals have used our research since 2012.