Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Dataiku comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
37
Ranking in other categories
AI Development Platforms (5th)
Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 6.9%, down from 9.7% compared to the previous year. The mindshare of Dataiku is 12.8%, up from 8.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The evolution from SageMaker Classic to SageMaker Studio, particularly the UI part of Studio, is commendable."
"The tool makes our ML model development a bit more efficient because everything is in one environment."
"The technical support of the tool was good."
"The most tool's valuable feature, in my experience, is hyperparameter tuning. It allows us to test different parameters for the same model in parallel, which helps us quickly identify the configuration that yields the highest accuracy. This parallel computing capability saves us a lot of time."
"The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use."
"I have seen a return on investment, probably a factor of four or five."
"The most valuable features in Amazon SageMaker are its AutoML, feature store, and automated hyperparameter tuning capabilities."
"The superb thing that SageMaker brings is that it wraps everything well. It's got the deployment, the whole framework."
"Dataiku is highly regarded as it is a leader in the Gartner ranking."
"I believe the return on investment looks positive."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"One of the valuable features of Dataiku is the workflow capability."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
 

Cons

"In my opinion, one improvement for Amazon SageMaker would be to offer serverless GPUs. Currently, we incur costs on an hourly basis. It would be beneficial if the tool could provide pay-as-you-go pricing based on endpoints."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"One area where Amazon SageMaker could improve is its pricing. The high costs can drive companies to explore other cloud options. Additionally, while generally good, the updates sometimes come with bugs, and the documentation could be much better. More examples and clearer guidance would be helpful."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"Improvements are needed in terms of complexity, data security, and access policy integration in Amazon SageMaker."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"The solution needs to be cheaper since it now charges per document for extraction."
"Scalability to handle big data can be improved by making integration with networks such as Hadoop and Apache Spark easier."
"The ability to have charts right from the explorer would be an improvement."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"The technical support from Dataiku is not good. The support team does not provide adequate assistance, and there are concerns about billing requests."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"There is room for improvement in terms of allowing for more code-based features."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
 

Pricing and Cost Advice

"The solution is relatively cheaper."
"The product is expensive."
"There is no license required for the solution since you can use it on demand."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"SageMaker is worth the money for our use case."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"I would rate the solution's price a ten out of ten since it is very high."
"Databricks solution is less costly than Amazon SageMaker."
"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Educational Organization
11%
Computer Software Company
11%
Manufacturing Company
9%
Financial Services Firm
18%
Educational Organization
12%
Manufacturing Company
9%
Computer Software Company
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
Dataiku DSS
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Find out what your peers are saying about Amazon SageMaker vs. Dataiku and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.