Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Dataiku comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
2nd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (5th)
Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of September 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 6.0%, down from 8.5% compared to the previous year. The mindshare of Dataiku is 12.3%, up from 10.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker6.0%
Dataiku12.3%
Other81.7%
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"SageMaker is a comprehensive platform where I can perform all machine learning activities."
"We've had no problems with SageMaker's stability."
"I have contacted the solution's technical support, and they were really good. I rate the technical support a ten out of ten."
"The Autopilot feature is really good because it's helpful for people who don't have much experience with coding or data pipelines. When we suggest SageMaker to clients, they don't have to go through all the steps manually. They can leverage Autopilot to choose variables, run experiments, and monitor costs. The results are also pretty accurate."
"We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for these models, making accessing them convenient as needed."
"The solution's ability to improve work at my organization stems from the ensemble model and a combination of various models it provides."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"Our clients can easily drag and drop components and use them on the spot."
"I rate the overall product as eight out of ten."
"One of the valuable features of Dataiku is the workflow capability."
"Dataiku is highly regarded as it is a leader in the Gartner ranking."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"Cloud-based process run helps in not keeping the systems on while processes are running."
 

Cons

"Lacking in some machine learning pipelines."
"The solution is complex to use."
"In general, improvements are needed on the performance side of the product's graphical user interface-related area since it consumes a lot of time for a user."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"Improvements are needed in terms of complexity, data security, and access policy integration in Amazon SageMaker."
"Amazon SageMaker could improve in the area of hyperparameter tuning by offering more automated suggestions and tips during the tuning process."
"The entry point can be a bit difficult. Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"The platform could be more accessible to users with basic coding skills, making it more intuitive and easier for beginners to use comfortably."
"The technical support from Dataiku is not good. The support team does not provide adequate assistance, and there are concerns about billing requests."
"The ability to have charts right from the explorer would be an improvement."
"There is room for improvement in terms of allowing for more code-based features."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"The license is very expensive."
 

Pricing and Cost Advice

"The pricing is comparable."
"The support costs are 10% of the Amazon fees and it comes by default."
"I would rate the solution's price a ten out of ten since it is very high."
"Amazon SageMaker is a very expensive product."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"Databricks solution is less costly than Amazon SageMaker."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
867,497 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
11%
Manufacturing Company
9%
University
6%
Financial Services Firm
18%
Manufacturing Company
10%
Computer Software Company
9%
Energy/Utilities Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise16
By reviewers
Company SizeCount
Small Business4
Midsize Enterprise1
Large Enterprise7
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
Dataiku DSS
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Find out what your peers are saying about Amazon SageMaker vs. Dataiku and other solutions. Updated: July 2025.
867,497 professionals have used our research since 2012.