Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
Data Science Platforms (2nd)
Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of September 2025, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 4.8%, down from 7.2% compared to the previous year. The mindshare of Hugging Face is 12.1%, up from 10.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face12.1%
Amazon SageMaker4.8%
Other83.1%
AI Development Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"SageMaker is a comprehensive platform where I can perform all machine learning activities."
"I appreciate the ease of use in Amazon SageMaker."
"They are doing a good job of evolving."
"We've had no problems with SageMaker's stability."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"The product aggregates everything we need to build and deploy machine learning models in one place."
"The feature I found most valuable is the data catalog, as it assists with the lineage of data through the preparation pipeline."
"The most valuable features are the inference APIs as it takes me a long time to run inferences on my local machine."
"I like that Hugging Face is versatile in the way it has been developed."
"My preferred aspects are natural language processing and question-answering."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"The product is reliable."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"I would rate this product nine out of ten."
 

Cons

"The documentation must be made clearer and more user-friendly."
"Lacking in some machine learning pipelines."
"There is room for improvement in the collaboration with serverless architecture, particularly integration with AWS Lambda."
"The user interface (UI) and user experience (UX) of SageMaker and AWS, in general, need improvement as they are not intuitive and require substantial time to learn how to use specific services."
"The model repository is a concern as models are stored on a bucket and there's an issue with versioning."
"One area where Amazon SageMaker could improve is its pricing. The high costs can drive companies to explore other cloud options. Additionally, while generally good, the updates sometimes come with bugs, and the documentation could be much better. More examples and clearer guidance would be helpful."
"Amazon might need to emphasize its capabilities in generative models more effectively."
"One area for improvement is the pricing, which can be quite high."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"Initially, I faced issues with the solution's configuration."
"The solution must provide an efficient LLM."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"Implementing a cloud system to showcase historical data would be beneficial."
"Access to the models and datasets could be improved."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
 

Pricing and Cost Advice

"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"The solution is relatively cheaper."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"On average, customers pay about $300,000 USD per month."
"You don't pay for Sagemaker. You only pay for the compute instances in your storage."
"The tool's pricing is reasonable."
"We do not have to pay for the product."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"Hugging Face is an open-source solution."
"The solution is open source."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"So, it's requires expensive machines to open services or open LLM models."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
867,370 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
11%
Manufacturing Company
9%
University
6%
Computer Software Company
11%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise16
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise3
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Hugging Face and other solutions. Updated: July 2025.
867,370 professionals have used our research since 2012.