Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
Data Science Platforms (3rd)
Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 5.0%, down from 7.4% compared to the previous year. The mindshare of Hugging Face is 12.6%, up from 9.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker ( /products/amazon-sagemaker-reviews ), such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue ( /products/aws-glue-reviews ) integrate well for data transformations. The Databricks ( /products/databricks-reviews ) integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow ( /products/tensorflow-reviews ), PyTorch ( /products/pytorch-reviews ), and MXNet ( /products/mxnet-reviews ), and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most tool's valuable feature, in my experience, is hyperparameter tuning. It allows us to test different parameters for the same model in parallel, which helps us quickly identify the configuration that yields the highest accuracy. This parallel computing capability saves us a lot of time."
"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"I have seen a return on investment, probably a factor of four or five."
"We've had no problems with SageMaker's stability."
"SageMaker offers functionalities like Jupyter Notebooks for development, built-in algorithms, model tuning, and options to deploy models on managed infrastructure."
"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"It's user-friendly for business teams as they can understand many aspects through the AWS interface."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"I like that Hugging Face is versatile in the way it has been developed."
"My preferred aspects are natural language processing and question-answering."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"Overall, the platform is excellent."
"I appreciate the versatility and the fact that it has generalized many models."
 

Cons

"The product must provide better documentation."
"Scalability to handle big data can be improved by making integration with networks such as Hadoop and Apache Spark easier."
"While integration is available, there are concerns about how secure this integration is, particularly when exposing data to SageMaker."
"AI is a new area and AWS needs to have an internship training program available."
"Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker."
"I would say the IDE is quite immature, but it is still in its infancy, so I expect it to get better over time."
"In general, improvements are needed on the performance side of the product's graphical user interface-related area since it consumes a lot of time for a user."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"Implementing a cloud system to showcase historical data would be beneficial."
"Initially, I faced issues with the solution's configuration."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"The solution must provide an efficient LLM."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
 

Pricing and Cost Advice

"The tool's pricing is reasonable."
"The product is expensive."
"I would rate the solution's price a ten out of ten since it is very high."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"The support costs are 10% of the Amazon fees and it comes by default."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"We do not have to pay for the product."
"The solution is open source."
"So, it's requires expensive machines to open services or open LLM models."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"Hugging Face is an open-source solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
864,053 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
11%
Manufacturing Company
9%
University
6%
Computer Software Company
11%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
The pricing is high, around an eight. However, SageMaker offers free trials for the first two months, allowing users to determine which features they need. It is considered value for money given it...
What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Hugging Face and other solutions. Updated: July 2025.
864,053 professionals have used our research since 2012.