Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Cloudera Data Science Workbench comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
2nd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (4th)
Cloudera Data Science Workb...
Ranking in Data Science Platforms
23rd
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 5.7%, down from 7.9% compared to the previous year. The mindshare of Cloudera Data Science Workbench is 1.3%, down from 1.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker5.7%
Cloudera Data Science Workbench1.3%
Other93.0%
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
Ismail Peer - PeerSpot reviewer
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I appreciate the ease of use in Amazon SageMaker."
"The most valuable feature of Amazon SageMaker is SageMaker Studio."
"The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use."
"They offer insights into everyone making calls in my organization."
"The deployment is very good, where you only need to press a few buttons."
"The feature I found most valuable is the data catalog, as it assists with the lineage of data through the preparation pipeline."
"We've had no problems with SageMaker's stability."
"One of the most valuable features of Amazon SageMaker for me is the one-touch deployment, which simplifies the process greatly."
"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"The Cloudera Data Science Workbench is customizable and easy to use."
 

Cons

"The solution is complex to use."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"In general, improvements are needed on the performance side of the product's graphical user interface-related area since it consumes a lot of time for a user."
"There are other better solutions for large data, such as Databricks."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"The user interface (UI) and user experience (UX) of SageMaker and AWS, in general, need improvement as they are not intuitive and require substantial time to learn how to use specific services."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"Amazon SageMaker could improve in the area of hyperparameter tuning by offering more automated suggestions and tips during the tuning process."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"The tool's MLOps is not good. It's pricing also needs to improve."
 

Pricing and Cost Advice

"The support costs are 10% of the Amazon fees and it comes by default."
"You don't pay for Sagemaker. You only pay for the compute instances in your storage."
"Databricks solution is less costly than Amazon SageMaker."
"SageMaker is worth the money for our use case."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"I would rate the solution's price a ten out of ten since it is very high."
"The pricing is comparable."
"The tool's pricing is reasonable."
"The product is expensive."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
871,688 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
11%
Manufacturing Company
9%
University
6%
Financial Services Firm
34%
Computer Software Company
8%
Healthcare Company
8%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise16
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
 

Also Known As

AWS SageMaker, SageMaker
CDSW
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
IQVIA, Rush University Medical Center, Western Union
Find out what your peers are saying about Amazon SageMaker vs. Cloudera Data Science Workbench and other solutions. Updated: September 2025.
871,688 professionals have used our research since 2012.