Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera Data Science Workb...
Ranking in Data Science Platforms
22nd
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Data Management Platforms (DMP) (5th), Streaming Analytics (1st)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Cloudera Data Science Workbench is 1.6%, up from 1.4% compared to the previous year. The mindshare of Databricks is 9.6%, down from 18.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Databricks9.6%
Cloudera Data Science Workbench1.6%
Other88.8%
Data Science Platforms
 

Featured Reviews

Ismail Peer - PeerSpot reviewer
Program Management Lead Advisor at Unionbank Philippines
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.
ShubhamSharma7 - PeerSpot reviewer
Data Engineer at a engineering company with 1,001-5,000 employees
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The Cloudera Data Science Workbench is customizable and easy to use."
"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"The most valuable feature of Databricks is the integration of the data warehouse and data lake, and the development of the lake house. Additionally, it integrates well with Spark for processing data in production."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"Databricks gives us the ability to build a lakehouse framework and do everything implicit to this type of database structure. We also like the ability to stream events. Databricks covers a broad spectrum, from reporting and machine learning to streaming events. It's important for us to have all these features in one platform."
"Databricks has helped us have a good presence in data."
"The most valuable feature is the ability to use SQL directly with Databricks."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"The most valuable aspect of the solution is its notebook. It's quite convenient to use, both terms of the research and the development and also the final deployment, I can just declare the spark jobs by the load tables. It's quite convenient."
"It offers AI functionalities that assist with code management and machine learning processes."
 

Cons

"The tool's MLOps is not good. It's pricing also needs to improve."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"The stability of the clusters or the instances of Databricks would be better if it was a much more stable environment. We've had issues with crashes."
"I believe that this product could be improved by becoming more user-friendly."
"It's not easy to use, and they need a better UI."
"The product should incorporate more learning aspects. It needs to have a free trial version that the team can practice."
"In the next release, I would like to see more optimization features."
"It would be better if it were faster. It can be slow, and it can be super fast for big data. But for small data, sometimes there is a sub-second response, which can be considered slow. In the next release, I would like to have automatic creation of APIs because they don't have it at the moment, and I spend a lot of time building them."
"A lot of people are required to manage this solution."
"Some of the error messages that we receive are too vague, saying things like "unknown exception", and these should be improved to make it easier for developers to debug problems."
 

Pricing and Cost Advice

"The product is expensive."
"I would rate the tool’s pricing an eight out of ten."
"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"We're charged on what the data throughput is and also what the compute time is."
"We pay as we go, so there isn't a fixed price. It's charged by the unit. I don't have any details detail about how they measure this, but it should be a mix between processing and quantity of data handled. We run a simulation based on our use cases, which gives us an estimate. We've been monitoring this, and the costs have met our expectations."
"The price is okay. It's competitive."
"Databricks' cost could be improved."
"The price of Databricks is reasonable compared to other solutions."
"I rate the price of Databricks as eight out of ten."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
879,477 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
38%
Manufacturing Company
8%
Healthcare Company
7%
Computer Software Company
5%
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

CDSW
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

IQVIA, Rush University Medical Center, Western Union
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Cloudera Data Science Workbench vs. Databricks and other solutions. Updated: December 2025.
879,477 professionals have used our research since 2012.