Try our new research platform with insights from 80,000+ expert users

StreamSets vs Upsolver comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

StreamSets
Ranking in Data Integration
22nd
Average Rating
8.4
Reviews Sentiment
7.0
Number of Reviews
21
Ranking in other categories
No ranking in other categories
Upsolver
Ranking in Data Integration
37th
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
3
Ranking in other categories
Streaming Analytics (20th)
 

Mindshare comparison

As of January 2026, in the Data Integration category, the mindshare of StreamSets is 1.2%, down from 1.6% compared to the previous year. The mindshare of Upsolver is 0.6%, up from 0.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration Market Share Distribution
ProductMarket Share (%)
StreamSets1.2%
Upsolver0.6%
Other98.2%
Data Integration
 

Featured Reviews

SS
Enterprise Solutions Architect at a energy/utilities company with 1,001-5,000 employees
Enables effective batch loading with visual interface and enterprise support
One issue I observed with StreamSets is that the memory runs out quickly when processing large volumes of data. Because of this memory issue, we have to upgrade our EC2 boxes in the Amazon AWS infrastructure. I had to switch to a new EC2 box, even though the processor was not fully utilized. It would be beneficial if StreamSets addressed any potential memory leak issues to prevent unnecessary upgrades. Additionally, it would be a great enhancement if StreamSets could produce a lineage graph to visualize how the data has passed through the system.
reviewer2784462 - PeerSpot reviewer
Software Engineer at a tech vendor with 10,001+ employees
Streaming pipelines have become simpler and onboarding new data sources is now much faster
One of the best features Upsolver offers is the automatic schema evolution. Another good feature is SQL-based streaming transformations. Complex streaming transformations such as cleansing, deduplication, and enrichment were implemented using SQL and drastically reduced the need for custom Spark code. My experience with the SQL-based streaming transformations in Upsolver is that it had a significant positive impact on the overall data engineering workflow. By replacing custom Spark streaming jobs with declarative SQL logic, I simplified development, review, and deployment processes. Data transformations such as parsing, filtering, enrichment, and deduplication could be implemented and modified quickly without rebuilding or redeploying complex code-based pipelines. Upsolver has impacted my organization positively because it brings many benefits. The first one is faster onboarding of new data sources. Another one is more reliable streaming pipelines. Another one is near-real-time data availability, which is very important for us. It also reduced operational effort for data engineering teams. A specific outcome that highlights these benefits is that the time to onboard new sources is reduced from weeks to days. Custom Spark code reduction reached 50 to 40 percent. Pipeline failures are reduced by 70 to 80 percent. Data latency is improved from hours to minutes.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"StreamSets data drift feature gives us an alert upfront so we know that the data can be ingested. Whatever the schema or data type changes, it lands automatically into the data lake without any intervention from us, but then that information is crucial to fix for downstream pipelines, which process the data into models, like Tableau and Power BI models. This is actually very useful for us. We are already seeing benefits. Our pipelines used to break when there were data drift changes, then we needed to spend about a week fixing it. Right now, we are saving one to two weeks. Though, it depends on the complexity of the pipeline, we are definitely seeing a lot of time being saved."
"What I love the most is that StreamSets is very light. It's a containerized application. It's easy to use with Docker. If you are a large organization, it's very easy to use Kubernetes."
"For me, the most valuable features in StreamSets have to be the Data Collector and Control Hub, but especially the Data Collector. That feature is very elegant and seamlessly works with numerous source systems."
"In StreamSets, everything is in one place."
"The most valuable features are the option of integration with a variety of protocols, languages, and origins."
"The scheduling within the data engineering pipeline is very much appreciated, and it has a wide range of connectors for connecting to any data sources like SQL Server, AWS, Azure, etc. We have used it with Kafka, Hadoop, and Azure Data Factory Datasets. Connecting to these systems with StreamSets is very easy."
"I have used Data Collector, Transformer, and Control Hub products from StreamSets. What I really like about these products is that they're very user-friendly. People who are not from a technological or core development background find it easy to get started and build data pipelines and connect to the databases. They would be comfortable like any technical person within a couple of weeks."
"I really appreciate the numerous ready connectors available on both the source and target sides, the support for various media file formats, and the ease of configuring and managing pipelines centrally."
"It was easy to use and set up, with a nearly no-code interface that relied mostly on drag-and-drop functionality."
"The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies."
"A specific outcome that highlights these benefits is that the time to onboard new sources is reduced from weeks to days, custom Spark code reduction reached 50 to 40 percent, pipeline failures are reduced by 70 to 80 percent, and data latency is improved from hours to minutes."
"Customer service is excellent, and I would rate it between eight point five to nine out of ten."
 

Cons

"The software is very good overall. Areas for improvement are the error logging and the version history. I would like to see better, more detailed error logging information."
"Sometimes, it is not clear at first how to set up nodes. A site with an explanation of how each node works would be very helpful."
"In terms of the product, I don't think there is any room for improvement because it is very good. One small area of improvement that is very much needed is on the knowledge base side. Sometimes, it is not very clear how to set up a certain process or a certain node for a person who's using the platform for the first time."
"One issue I observed with StreamSets is that the memory runs out quickly when processing large volumes of data. Because of this memory issue, we have to upgrade our EC2 boxes in the Amazon AWS infrastructure."
"They need to improve their customer care services. Sometimes it has taken more than 48 hours to resolve an issue. That should be reduced. They are aware of small or generic issues, but not the more technical or deep issues. For those, they require some time, generally 48 to 72 hours to respond. That should be improved."
"StreamSet works great for batch processing but we are looking for something that is more real-time. We need latency in numbers below milliseconds."
"If you use JDBC Lookup, for example, it generally takes a long time to process data."
"I would like to see it integrate with other kinds of platforms, other than Java. We're going to have a lot of applications using .NET and other languages or frameworks. StreamSets is very helpful for the old Java platform but it's hard to integrate with the other platforms and frameworks."
"On the stability side, I would rate it seven out of ten. Using multiple cloud providers and data engineering technologies creates complexity, and managing different plugins is not always easy, but they are working on it."
"There is room for improvement in query tuning."
"Upsolver excels in ETL and data aggregation, while ThoughtSpot is strong in natural language processing for querying datasets. Combining these tools can be very effective: Upsolver handles aggregation and ETL, and ThoughtSpot allows for natural language queries. There’s potential for highlighting these integrations in the future."
"I think that Upsolver can be improved in orchestration because it is not a full orchestration tool."
 

Pricing and Cost Advice

"Its pricing is pretty much up to the mark. For smaller enterprises, it could be a big price to pay at the initial stage of operations, but the moment you have the Seed B or Seed C funding and you want to scale up your operations and aren't much worried about the funds, at that point in time, you would need a solution that could be scaled."
"It has a CPU core-based licensing, which works for us and is quite good."
"We use the free version. It's great for a public, free release. Our stance is that the paid support model is too expensive to get into. They should honestly reevaluate that."
"The overall cost is very flexible so it is not a burden for our organization... However, the cost should be improved. For small and mid-size organizations it might be a challenge."
"StreamSets is an expensive solution."
"StreamSets Data Collector is open source. One can utilize the StreamSets Data Collector, but the Control Hub is the main repository where all the jobs are present. Everything happens in Control Hub."
"The pricing is affordable for any business."
"It's not so favorable for small companies."
"Upsolver is affordable at approximately $225 per terabyte per year."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Insurance Company
8%
Financial Services Firm
8%
Manufacturing Company
8%
Computer Software Company
8%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise11
No data available
 

Questions from the Community

What do you like most about StreamSets?
The best thing about StreamSets is its plugins, which are very useful and work well with almost every data source. It's also easy to use, especially if you're comfortable with SQL. You can customiz...
What needs improvement with StreamSets?
One issue I observed with StreamSets is that the memory runs out quickly when processing large volumes of data. Because of this memory issue, we have to upgrade our EC2 boxes in the Amazon AWS infr...
What is your primary use case for StreamSets?
We are using StreamSets for batch loading.
What is your experience regarding pricing and costs for Upsolver?
Upsolver is affordable at approximately $225 per terabyte per year. Compared to what I know from others, it's cheaper than many other products.
What needs improvement with Upsolver?
There is room for improvement in query tuning. Upsolver could do a more in-depth analysis in employing machine power, such as CPU and memory, to enhance query performance. Furthermore, allocating C...
What is your primary use case for Upsolver?
I am working as a consultant and currently have my own consultancy services. I provide services to companies that are data-heavy and looking for data engineering solutions for their business needs....
 

Comparisons

 

Overview

 

Sample Customers

Availity, BT Group, Humana, Deluxe, GSK, RingCentral, IBM, Shell, SamTrans, State of Ohio, TalentFulfilled, TechBridge
Information Not Available
Find out what your peers are saying about StreamSets vs. Upsolver and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.