Try our new research platform with insights from 80,000+ expert users

Google Cloud Bigtable vs Microsoft Azure Cosmos DB comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 15, 2026

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Bigtable
Ranking in Managed NoSQL Databases
10th
Average Rating
8.6
Reviews Sentiment
6.3
Number of Reviews
9
Ranking in other categories
Non-Relational Databases (6th)
Microsoft Azure Cosmos DB
Ranking in Managed NoSQL Databases
1st
Average Rating
8.2
Reviews Sentiment
6.9
Number of Reviews
109
Ranking in other categories
Database as a Service (DBaaS) (4th), NoSQL Databases (2nd), Vector Databases (1st)
 

Mindshare comparison

As of January 2026, in the Managed NoSQL Databases category, the mindshare of Google Cloud Bigtable is 5.2%, down from 6.9% compared to the previous year. The mindshare of Microsoft Azure Cosmos DB is 16.4%, down from 17.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Managed NoSQL Databases Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Cosmos DB16.4%
Google Cloud Bigtable5.2%
Other78.4%
Managed NoSQL Databases
 

Featured Reviews

AS
Team Lead at a financial services firm with 5,001-10,000 employees
Consistent performance and seamless cloud integration enhance analytics capabilities while reducing management complexity
One point for improvement in Google Cloud Bigtable is that people have confusion in mapping. There are many similar products available, and Google has managed services for similar products as well. It would be easier if the journey of knowing when to use Google Cloud Bigtable versus other Cloud SQL and alternates such as Cloud Spanner is made clearer for users. Regarding additional functionality for Google Cloud Bigtable, I am uncertain if LLMs can be integrated or if Google Cloud Bigtable can act as a vector store for LLM-specific use cases where we are interacting or using generative AI capabilities.
reviewer2724105 - PeerSpot reviewer
Senior Director of Product Management at a tech vendor with 1,001-5,000 employees
Provides super sharp latency, excellent availability, and the ability to effectively manage costs across different tenants
For integrating Microsoft Azure Cosmos DB with other Azure products or other products, there are a couple of challenges with the current system. Right now, the vectors are stored as floating-point numbers within the NoSQL document, which makes them inefficiently large. This leads to increased storage space requirements, and searching through a vast number of documents in the vector database becomes quite costly in terms of RUs. While the integration works well, the expense associated with it is relatively high. I would really like to see a reduction in costs for their vector search, as it is currently on the expensive side. The areas for improvement in Microsoft Azure Cosmos DB are vector pricing and vector indexing patterns, which are unintuitive and not well described. I would also like to see the parameters of Fleet Spaces made more powerful, as currently, it's somewhat lightweight. I believe they've made those changes intentionally to better understand the cost model. However, we would like to take a more aggressive approach in using it. One of the most frustrating aspects of Microsoft Azure Cosmos DB right now is that you can only store one vector per document. Additionally, you must specify the configuration of that vector when you create an instance of Microsoft Azure Cosmos DB. Once the database is set up, you can't change the vector configuration, which is incredibly limiting for experimentation. You want the ability to try different settings and see how they perform, as there are numerous use cases for storing more than one vector in a document. While interoperability within the vector database is acceptable—for example, I can search for vectors—I still desire a richer set of configuration options.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's very user-friendly where streaming data is required."
"Stability-wise, it is a simple solution. I rate the solution's stability a ten out of ten."
"The main benefit I receive from Google Cloud Bigtable is the managed service part."
"The most valuable feature is the backup and replication service."
"The solution is very convenient."
"The main benefit I receive from Google Cloud Bigtable is the managed service part."
"Bigtable is faster than other competitors in the market. It helps us collate all the data, and the security features are great. The latency is low, and the computation speed is fantastic. Bigtable is also a managed service, so you don't have to worry about anything aside from analyzing the data ingested."
"I like the drive and the support of this program."
"We chose Azure Cosmos DB initially because of the type of data that we needed to store. We have a schema that is very nondeterministic and flexible. It is always changing based on whatever data we need to acquire from different devices, so we needed a document store with a flexible schema."
"Azure Cosmos DB offers efficient indexing and low search latency, making searching fast and efficient and ensuring peace of mind in database operations."
"The high speed of Azure Cosmos DB compared to other competitors is remarkable."
"The efficiency of search capabilities is significant, particularly when it comes to the flexibility of conducting in-depth, almost recursive searches that are both efficient and cost-effective."
"It's not a specific feature that I value, but the scalability of this system is the most impressive aspect."
"Cosmos is a PaaS, so you don't need to worry about infrastructure and hosting. It has various APIs that allow it to integrate with other solutions. For example, we are using a MongoDB-compatible API for customers, which makes it easier for developers on the team who previously used MongoDB or are accustomed to the old document storage paradigm."
"Microsoft Azure Cosmos DB simplifies the process of saving and retrieving data."
"Cosmos DB is a document database that stores data in JSON format for faster retrieval of unstructured data. I personally appreciate the speed, which is significantly better for unstructured data, especially since Cosmos DB had JSON as a data type early on."
 

Cons

"The pricing of the solution needs to be improved."
"This product needs better security and transparency, and the price should be reduced."
"I've used Bigtable for about three or four years."
"The cost of this product is too expensive."
"The lagging problem of the product I face is an area of concern where improvements are required."
"Improvement should be made as per customer recommended and requirements."
"When it comes to complex queries, a user can't get any help from a drop-down box and pick columns. It would be great if some improvements could be made in the aforementioned area concerning the solution."
"The operational complexity of Microsoft Azure Cosmos DB can be challenging for individuals who are not tech-savvy."
"An improvement could include increasing the document size or providing a method to manage larger sets efficiently. If they want to keep a 2 MB limit, they should provide a way to chain multiple documents in a systematic way so that developers do not have to figure out what to do when a document is larger than 2 MB."
"One of our biggest pain points is the backup and restore functionality needs improvement."
"An improvement would be a more robust functionality around updating elements on a document, or some type of procedural updates that don't require pulling the entire document."
"The solution cannot join two databases like Oracle or SQL Server."
"There is room for improvement in terms of stability."
"What is missing in Microsoft Azure Cosmos DB is definitely cold storage. We know it's coming, but that's currently what is missing—the possibility to park older data in a cold tier."
"Cosmos DB should continue evolving in AI features. We expect Cosmos DB to lead on that. There is potential for improved security features, which is important for data storage, especially for Dell Technologies. We must ensure data security remains the top priority."
 

Pricing and Cost Advice

"I would like to see better pricing. It is not too expensive, but it isn't cheap either."
"The cost is the biggest limitation of this solution."
"Pricing is one of the solution's main features because it is based on usage, scales automatically, and is not too costly."
"Microsoft provides fair pricing."
"The RU's use case determines our license fees."
"Cosmos DB is expensive compared to any virtual machine based on conventional RDBMS like MySQL or PostgreSQL."
"Microsoft Azure Cosmos DB pricing is based on RUs. Reading 1 KB document costs one RU, whereas writing one document costs five RUs. Pricing for querying depends on the complexity of the query. If you increase the document size, it will automatically increase the RU cost."
"It is cost-efficient as long as you understand the right setup to optimize usage. Knowing the data needs of the organization and adjusting the Microsoft Azure Cosmos DB usage accordingly helps save costs, but if you don't know, you could end up spending more than necessary."
"We are not consuming so much yet since we are at the beginning of using this solution. I would rate the pricing of Microsoft Azure Cosmos DB a six out of ten."
report
Use our free recommendation engine to learn which Managed NoSQL Databases solutions are best for your needs.
880,901 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
9%
Financial Services Firm
9%
University
9%
Manufacturing Company
8%
Legal Firm
13%
Financial Services Firm
11%
Comms Service Provider
9%
Manufacturing Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business6
Large Enterprise3
By reviewers
Company SizeCount
Small Business33
Midsize Enterprise21
Large Enterprise58
 

Questions from the Community

What do you like most about Google Cloud Bigtable?
Scalability-wise, I rate the solution a ten out of ten.
What needs improvement with Google Cloud Bigtable?
One point for improvement in Google Cloud Bigtable is that people have confusion in mapping. There are many similar products available, and Google has managed services for similar products as well....
What is your primary use case for Google Cloud Bigtable?
My main use case for Google Cloud Bigtable is mainly for advertisement-related analytics-related use cases.
What do you like most about Microsoft Azure Cosmos DB?
The initial setup is simple and straightforward. You can set up a Cosmos DB in a day, even configuring things like availability zones around the world.
What is your experience regarding pricing and costs for Microsoft Azure Cosmos DB?
Microsoft Azure Cosmos DB's pricing model has aligned with my budget expectations because I can tune the RU as I need to, which helps a lot. Microsoft Azure Cosmos DB's dynamic auto-scale or server...
What needs improvement with Microsoft Azure Cosmos DB?
I have not utilized Microsoft Azure Cosmos DB multi-model support for handling diverse data types. I'm not in the position to decide if clients will use Microsoft Azure Cosmos DB or any other datab...
 

Also Known As

Google BigTable
Microsoft Azure DocumentDB, MS Azure Cosmos DB
 

Overview

 

Sample Customers

Cognite, Dow Jones, Loblaw Digital
TomTom, KPMG Australia, Bosch, ASOS, Mercedes Benz, NBA, Zero Friction, Nederlandse Spoorwegen, Kinectify
Find out what your peers are saying about Google Cloud Bigtable vs. Microsoft Azure Cosmos DB and other solutions. Updated: December 2025.
880,901 professionals have used our research since 2012.