

Find out in this report how the two Data Science Platforms solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
| Product | Market Share (%) |
|---|---|
| Starburst Galaxy | 1.0% |
| Amazon Comprehend | 0.6% |
| Other | 98.4% |

| Company Size | Count |
|---|---|
| Small Business | 4 |
| Midsize Enterprise | 2 |
| Large Enterprise | 1 |
Amazon Comprehend is a natural language processing (NLP) service that uses machine learning to find insights and relationships in text. No machine learning experience required.
There is a treasure trove of potential sitting in your unstructured data. Customer emails, support tickets, product reviews, social media, even advertising copy represents insights into customer sentiment that can be put to work for your business. The question is how to get at it? As it turns out, Machine learning is particularly good at accurately identifying specific items of interest inside vast swathes of text (such as finding company names in analyst reports), and can learn the sentiment hidden inside language (identifying negative reviews, or positive customer interactions with customer service agents), at almost limitless scale.
Amazon Comprehend uses machine learning to help you uncover the insights and relationships in your unstructured data. The service identifies the language of the text; extracts key phrases, places, people, brands, or events; understands how positive or negative the text is; analyzes text using tokenization and parts of speech; and automatically organizes a collection of text files by topic. You can also use AutoML capabilities in Amazon Comprehend to build a custom set of entities or text classification models that are tailored uniquely to your organization’s needs.
For extracting complex medical information from unstructured text, you can use Amazon Comprehend Medical. The service can identify medical information, such as medical conditions, medications, dosages, strengths, and frequencies from a variety of sources like doctor’s notes, clinical trial reports, and patient health records. Amazon Comprehend Medical also identifies the relationship among the extracted medication and test, treatment and procedure information for easier analysis. For example, the service identifies a particular dosage, strength, and frequency related to a specific medication from unstructured clinical notes.
Amazon Comprehend is fully managed, so there are no servers to provision, and no machine learning models to build, train, or deploy. You pay only for what you use, and there are no minimum fees and no upfront commitments.
Starburst Galaxy offers rapid query speeds and robust cluster management, enhancing data engineering efficiency while supporting AWS integrations and cross-database functionality. Users benefit from its advanced data integration and federated querying capabilities.
Starburst Galaxy stands out with a compute-focused architecture that excels in facilitating seamless data integration. Technological innovations like autoscaling clusters and automated metadata management optimize operations in multi-tenant environments. With a keen emphasis on compatibility, the platform provides support for AWS Glue and enables federated querying across S3, Snowflake, and Redshift. This adaptability ensures comprehensive ETL processes and enhances analytics through querying SQL Server, Google Sheets, and blob stores. While noted for its robust capabilities, users seek improvements in cluster startup times, Tableau and AI support, and desire infrastructure-as-code enhancements.
What are Starburst Galaxy's key features?In industries focusing on large-scale data efforts, Starburst Galaxy plays an essential role in connecting data sources like Amazon S3 and RDS, streamlining tasks in data engineering and ad-hoc analysis across complex environments. Teams leverage its cross-database querying to boost AWS analytics, with features tailored for sectors needing agile data solutions, from ETL pipelines to secure data federation.
We monitor all Data Science Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.