Try our new research platform with insights from 80,000+ expert users

Amazon Comprehend vs Databricks comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Comprehend
Ranking in Data Science Platforms
19th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (8th), Streaming Analytics (1st)
 

Mindshare comparison

As of June 2025, in the Data Science Platforms category, the mindshare of Amazon Comprehend is 0.5%, down from 0.7% compared to the previous year. The mindshare of Databricks is 16.5%, down from 19.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Ashish Lata - PeerSpot reviewer
Integration with automation tools enhances customer sentiment analysis
Comprehend is a useful service for sentiment analysis as it analyzes customer transcripts to evaluate interactions between customers and agents. It provides scores indicating whether sentiments are positive, negative, or neutral. The integration with AWS services like DynamoDB and Lambda facilitates automated analysis, contributing to more informed assessments of customer interactions.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Amazon Comprehend works with a large pool of doctors. They're building the product based on working with domain experts."
"I am totally happy with AWS support, as they provide excellent solutions."
"Databricks has helped us have a good presence in data."
"The initial setup is pretty easy."
"Imageflow is a visual tool that helps make it easier for business people to understand complex workflows."
"The solution is built from Spark and has integration with MLflow, which is important for our use case."
"Databricks' most valuable features are the workspace and notebooks. Its integration, interface, and documentation are also good."
"Databricks' capability to process data in parallel enhances data processing speed."
"I like how easy it is to share your notebook with others. You can give people permission to read or edit. I think that's a great feature. You can also pull in code from GitHub pretty easily. I didn't use it that often, but I think that's a cool feature."
"The most valuable features of the solution are the hardware and the resources it quickly provides without much hassle."
 

Cons

"There is room for improvement in terms of accuracy. For example, when a sentence expresses a negative sentiment, such as 'I want to cancel my credit card,' it is crucial for the system to accurately identify it as negative."
"It is a bit complex to scale. It is still evolving as a product."
"The connectivity with various BI tools could be improved, specifically the performance and real time integration."
"Overall it's a good product, however, it doesn't do well against any individual best-of-breed products."
"Support for Microsoft technology and the compatibility with the .NET framework is somewhat missing."
"Scalability is an area with certain shortcomings. The solution's scalability needs improvement."
"The data visualization for this solution could be improved. They have started to roll out a data visualization tool inside Databricks but it is in the early stages. It's not comparable to a solution like Power BI, Luca, or Tableau."
"There would also be benefits if more options were available for workers, or the clusters of the two points."
"The biggest problem associated with the product is that it is quite pricey."
"Costs can quickly add up if you don't plan for it."
 

Pricing and Cost Advice

Information not available
"Databricks is a very expensive solution. Pricing is an area that could definitely be improved. They could provide a lower end compute and probably reduce the price."
"The billing of Databricks can be difficult and should improve."
"There are different versions."
"The solution requires a subscription."
"We find Databricks to be very expensive, although this improved when we found out how to shut it down at night."
"The pricing depends on the usage itself."
"The solution uses a pay-per-use model with an annual subscription fee or package. Typically this solution is used on a cloud platform, such as Azure or AWS, but more people are choosing Azure because the price is more reasonable."
"We're charged on what the data throughput is and also what the compute time is."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
859,129 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
17%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Amazon Comprehend?
Regarding improvements, I would focus on accuracy. For example, if a customer says, 'I want to cancel my credit card,' it should clearly be identified as a negative sentiment. Improving accuracy in...
What is your primary use case for Amazon Comprehend?
I have used Amazon Comprehend primarily for sentiment analysis in my project. I analyze customer transcripts to determine if they are satisfied with the agents they interact with. I store the trans...
What advice do you have for others considering Amazon Comprehend?
I would rate Amazon Comprehend an eight out of ten because there is always room for improvement, especially in terms of accuracy. For those new to Comprehend, understanding its usage and reviewing ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

No data available
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

LexisNexis, Vibes, FINRA, VidMob
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Amazon Comprehend vs. Databricks and other solutions. Updated: June 2025.
859,129 professionals have used our research since 2012.