Try our new research platform with insights from 80,000+ expert users

Amazon Comprehend vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Comprehend
Ranking in Data Science Platforms
19th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Amazon Comprehend is 0.5%, down from 0.8% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.3%, down from 9.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Ashish Lata - PeerSpot reviewer
Integration with automation tools enhances customer sentiment analysis
Comprehend is a useful service for sentiment analysis as it analyzes customer transcripts to evaluate interactions between customers and agents. It provides scores indicating whether sentiments are positive, negative, or neutral. The integration with AWS services like DynamoDB and Lambda facilitates automated analysis, contributing to more informed assessments of customer interactions.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I am totally happy with AWS support, as they provide excellent solutions."
"Amazon Comprehend works with a large pool of doctors. They're building the product based on working with domain experts."
"Its ability to publish a predictive model as a web based solution and integrate R and python codes are amazing."
"Azure's AutoML feature is probably better than the competition."
"Azure Machine Learning Studio provides a platform to integrate with large language models."
"The most valuable feature of Azure Machine Learning Studio for me is its convenience. I can quickly start using it without setting up the environment or buying a lot of devices."
"It's easy to use."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"The most valuable feature of the solution is the availability of ChatGPT in the solution."
"The solution is scalable."
 

Cons

"There is room for improvement in terms of accuracy. For example, when a sentence expresses a negative sentiment, such as 'I want to cancel my credit card,' it is crucial for the system to accurately identify it as negative."
"It is a bit complex to scale. It is still evolving as a product."
"Microsoft Azure Machine Learning Studio worked okay for me, so right now, I don't have any room for improvement in mind for it. What I'd like added to Microsoft Azure Machine Learning Studio in its next version is a categorization for use cases or a template that makes the use cases simple to map out, for example, for healthcare, medical, or finance use cases, etc. This would be very helpful for users of Microsoft Azure Machine Learning Studio, especially for beginners."
"They should have a desktop version to work on the platform."
"The price of the solution has room for improvement."
"The solution must increase the amount of data sources that can be integrated."
"One area where Azure Machine Learning Studio could improve is its user interface structure."
"Machine Learning Studio is more dependent on legacy Machine Learning algorithms. It would be beneficial for them to incorporate more services required for LLMs or LLM evaluation."
"The speed of deployment should be faster, as should testing."
"There should be data access security, a role level security. Right now, they don't offer this."
 

Pricing and Cost Advice

Information not available
"The solution cost is high."
"There is a license required for this solution."
"There isn’t any such expensive costs and only a standard license is required."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"The product is not that expensive."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"There is a lack of certainty with the solution's pricing."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
10%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Amazon Comprehend?
Regarding improvements, I would focus on accuracy. For example, if a customer says, 'I want to cancel my credit card,' it should clearly be identified as a negative sentiment. Improving accuracy in...
What is your primary use case for Amazon Comprehend?
I have used Amazon Comprehend primarily for sentiment analysis in my project. I analyze customer transcripts to determine if they are satisfied with the agents they interact with. I store the trans...
What advice do you have for others considering Amazon Comprehend?
I would rate Amazon Comprehend an eight out of ten because there is always room for improvement, especially in terms of accuracy. For those new to Comprehend, understanding its usage and reviewing ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

LexisNexis, Vibes, FINRA, VidMob
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Amazon Comprehend vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.