"StreamSets data drift feature gives us an alert upfront so we know that the data can be ingested. Whatever the schema or data type changes, it lands automatically into the data lake without any intervention from us, but then that information is crucial to fix for downstream pipelines, which process the data into models, like Tableau and Power BI models. This is actually very useful for us. We are already seeing benefits. Our pipelines used to break when there were data drift changes, then we needed to spend about a week fixing it. Right now, we are saving one to two weeks. Though, it depends on the complexity of the pipeline, we are definitely seeing a lot of time being saved."
"I have used Data Collector, Transformer, and Control Hub products from StreamSets. What I really like about these products is that they're very user-friendly. People who are not from a technological or core development background find it easy to get started and build data pipelines and connect to the databases. They would be comfortable like any technical person within a couple of weeks."
"In StreamSets, everything is in one place."
"It is really easy to set up and the interface is easy to use."
"StreamSets’ data drift resilience has reduced the time it takes us to fix data drift breakages. For example, in our previous Hadoop scenario, when we were creating the Sqoop-based processes to move data from source to destinations, we were getting the job done. That took approximately an hour to an hour and a half when we did it with Hadoop. However, with the StreamSets, since it works on a data collector-based mechanism, it completes the same process in 15 minutes of time. Therefore, it has saved us around 45 minutes per data pipeline or table that we migrate. Thus, it reduced the data transfer, including the drift part, by 45 minutes."
"This product provides good reports using a single pane of glass."
"Its connection to on-premise products is the most valuable. We mostly use the on-premise connection, which is seamless. This is what we prefer in this solution over other solutions. We are using it the most for the orchestration where the data is coming from different categories. Its other features are very much similar to what they are giving us in open source. Their push-down approach is the most advantageous, where they push most of the processing on to the same data source. This means that they have a serverless kind of thing, and they don't process the data inside a product such as Data Hub. They process the data from where the data is coming out. If it is coming from HANA, to capture the data or process it for analytics, orchestration, or management, they go to the HANA database and give it out. They don't process it on Data Hub. This push-down approach increases the processing speed a little bit because the data is processed where it is sitting. That's the best part and an advantage. I have used another product where they used to capture the data first and then they used to process it and give it. In Data Hub, it is in reverse. They process it first and give it, and then they put their own manipulations. They lead in terms of business functions. No other solution has business functions already implemented to perform business analysis. They have a lot of prebuilt business functions for machine learning and orchestration, which we can use directly to get an analysis out from the existing data. Most of the data is sitting as enterprise data there. That's a major advantage that they have."
"The most valuable feature is the S/4HANA 1909 On-Premise"
"Currently, we can only use the query to read data from SAP HANA. What we would like to see, as soon as possible, is the ability to read from multiple tables from SAP HANA. That would be a really good thing that we could use immediately. For example, if you have 100 tables in SQL Server or Oracle, then you could just point it to the schema or the 100 tables and ingestion information. However, you can't do that in SAP HANA since StreamSets currently is lacking in this. They do not have a multi-table feature for SAP HANA. Therefore, a multi-table origin for SAP HANA would be helpful."
"The logging mechanism could be improved. If I am working on a pipeline, then create a job out of it and it is running, it will generate constant logs. So, the logging mechanism could be simplified. Now, it is a bit difficult to understand and filter the logs. It takes some time."
"If you use JDBC Lookup, for example, it generally takes a long time to process data."
"We've seen a couple of cases where it appears to have a memory leak or a similar problem."
"We create pipelines or jobs in StreamSets Control Hub. It is a great feature, but if there is a way to have a folder structure or organize the pipelines and jobs in Control Hub, it would be great. I submitted a ticket for this some time back."
"The technical support for Analytics Hub is limited and could be improved."
"Nowadays there are some inconsistencies in data bases, however, they upgrade and release the versions to market."
"In 2018, connecting it to outside sources, such as IoT products or IoT-enabled big data Hadoop, was a little complex. It was not smooth at the beginning. It was unstable. It took a lot of time for the initial data load. Sometimes, the connection broke, and we had to restart the process, which was a major issue, but they might have improved it now. It is very smooth with SAP HANA on-premise system, SAP Cloud Platform, and SAP Analytics Cloud. It could be because these are their own products, and they know how to integrate them. With Hadoop, they might have used open-source technologies, and that's why it was breaking at that time. They are providing less embedded integration because they want us to use their other products. For example, they don't want to go and remove SAP Analytics Cloud and put everything in Data Hub. They want us to use SAP Analytics Cloud somewhere else and not inside the Data Hub. On the integration part, it lacks real-time analytics, and it is slow. They should embed the SAP Analytics Cloud inside Data Hub or support some kind of analysis. They do provide some analysis, but it is not extensive. They are moreover open source. So, we need a lot of developers or data scientists to go in and implement Python algorithms. It would be better if they can provide their own existing algorithms and give some connections and drop-down menus to go and just configure those. It will make things really quick by increasing the embedded integrations. It will also improve the process efficiency and processing power. Its performance needs improvement. It is a little slow. It is not the best in the market, and there are other products that are much better than this. In terms of technology and performance, it is a little slow as compared to Microsoft and other data orchestration products. I haven't used other products, but I have read about those products, their settings, and the milliseconds that they do. In Azure Purview, they say that they can copy, manage, or transform the data within milliseconds. They say that they can transform 100 gigabytes of data within three to five seconds, which is something SAP cannot do. It generally takes a lot of time to process that much amount of data. However, I have never tested out Azure."
SAP Analytics Hub is ranked 42nd in Data Integration Tools with 1 review while SAP Data Hub is ranked 7th in Data Governance with 2 reviews. SAP Analytics Hub is rated 6.0, while SAP Data Hub is rated 8.0. The top reviewer of SAP Analytics Hub writes "Good reporting, facilitates integration with other SAP products, but the technical support is limited". On the other hand, the top reviewer of SAP Data Hub writes "Good push-down approach, on-premise connection, and integration with SAP products, but needs better performance and integration with other solutions". SAP Analytics Hub is most compared with SAP Analytics Cloud, Tableau, Microsoft BI, Amazon QuickSight and Alteryx, whereas SAP Data Hub is most compared with SAP Data Services, Qlik Replicate, Palantir Foundry, SAP Process Orchestration and Azure Data Factory.
We monitor all Data Integration Tools reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.