

Find out in this report how the two Cloud Data Warehouse solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
Dremio surely saves time, reduces costs, and all those things because we don't have to worry so much about the infrastructure to make the different tools communicate.
We have had to reach out for customer support many times, and they respond, so they are pretty supportive about some long-term issues.
Technical support is very costly for me, accounting for twenty-five to thirty percent of the product cost.
Dremio's scalability can handle growing data and user demands easily.
Internally, if it's on Docker or Kubernetes, scalability will be built into the system.
It is provided as a pre-configured box, and scaling is not an option.
I rate Dremio a nine in terms of stability.
Starburst comes with around 50 connectors now.
It should be easier to get Arctic or an open-source version of Arctic onto the software version so that development teams can experiment with it.
I see that many times the new versions of Dremio have not fixed old bugs, and in some new versions, old problems that were previously fixed come back again, so I think the upgrade part could use improvement.
The cloud version is only available in AWS, and in the Middle East, it is not well-developed in the Azure environment.
Having everything under one system and an easier-to-work-with interface, along with having API integrations, adds significant value to working with Dremio.
Dremio has positively impacted my organization as nowadays we are connected to multiple databases from multiple environments, multiple APIs, and applications, and Dremio organizes everything in an amazing way for me.
You just get the source, connect the data, get visualization, get connected, and do whatever you want.
It operates as a high-speed data warehouse, which is essential for handling big data.


| Company Size | Count |
|---|---|
| Small Business | 1 |
| Midsize Enterprise | 5 |
| Large Enterprise | 5 |
| Company Size | Count |
|---|---|
| Small Business | 9 |
| Midsize Enterprise | 5 |
| Large Enterprise | 33 |
Dremio offers a comprehensive platform for data warehousing and data engineering, integrating seamlessly with data storage systems like Amazon S3 and Azure. Its main features include scalability, query federation, and data reflection.
Dremio's core strength lies in its ability to function as a robust data lake query engine and data warehousing solution. It facilitates the creation of complex queries with ease, thanks to its support for Apache Airflow and query federation across endpoints. Despite challenges with Delta connector support, complex query execution, and expensive licensing, users find it valuable for managing ad-hoc queries and financial data analytics. The platform aids in SQL table management and BI traffic visualization while reducing storage costs and resolving storage conflicts typical in traditional data warehouses.
What are Dremio's most valuable features?Dremio is primarily implemented in industries requiring extensive data engineering and analytics, including finance and technology. Companies use it for constructing data frameworks, efficiently processing financial analytics, and visualizing BI traffic. It acts as a viable alternative to AWS Glue and Apache Hive, integrating seamlessly with multiple databases, including Oracle and MySQL, offering robust solutions for data-driven strategies. Despite some challenges, its ability to reduce data storage costs and manage complex queries makes it a favorable choice among enterprise users.
IBM Netezza Performance Server offers high performance, scalability, and minimal maintenance. It seamlessly integrates SQL for efficient data processing, making it ideal for enterprise data warehousing needs.
IBM Netezza Performance Server is known for its outstanding data processing capabilities. Its integration of FPGA technology, compression techniques, and partitioning optimizes query execution and scalability. Users appreciate its appliance-like architecture for straightforward deployment, distributed querying, and high availability, significantly boosting operations and analytics capabilities. However, there are areas for improvement, particularly in handling high concurrency, real-time integration, and specific big data functionalities. Enhancements in database management tools, XML integration, and cloud options are commonly desired, along with better marketing and community engagement.
What are the key features of IBM Netezza Performance Server?Industries rely on IBM Netezza Performance Server for robust data warehousing solutions, particularly in sectors requiring intensive data analysis such as finance, retail, and telecommunications. Organizations use it to power business intelligence tools like Business Objects and MicroStrategy for customer analytics, establishing data marts and staging tables to efficiently manage and update enterprise data. With the capacity to handle large volumes of compressed and uncompressed data, it finds numerous applications in on-premises setups, powering data mining and reporting with high reliability and efficiency.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.