Try our new research platform with insights from 80,000+ expert users

Azure OpenAI vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure OpenAI
Ranking in AI Development Platforms
1st
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
33
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
20
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the AI Development Platforms category, the mindshare of Azure OpenAI is 12.0%, down from 20.8% compared to the previous year. The mindshare of TensorFlow is 3.8%, down from 6.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Viswanath Barenkala - PeerSpot reviewer
Offers tools to moderate generated content and guidance to safely design applications, but it is not consistently accessible
Instead of a feature, the GPT-4 model has been most beneficial for automating tasks. We transitioned from GPT-3.5 to GPT-4 and actively use it. However, we face limitations due to geographic availability, subscription constraints, and rate limiting, which we are currently negotiating and working towards optimizing. While we haven't formally benchmarked Azure OpenAI's language understanding against industry standards, we find it performs well about 70-80% of the time. Occasionally, we need to refine our queries and adapt our systems accordingly to improve accuracy and effectiveness.
Ashish Upadhyay - PeerSpot reviewer
A robust tools for model visualization and debugging with superior scalability and stability, and an intuitive user-friendly interface
The one feature we find most valuable at our company is its robust and flexible machine-learning capabilities. It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions. The ability to develop and fine-tune models, such as risk assessment for detection and market protection, as well as the creation of recommendation systems, is paramount. This versatility extends to providing personalized identity-relevant applications for our enterprise clients, delivering valuable insights to the market. Its exceptional support for deep learning and its efficient resource utilization enable us to undertake complex financial and data analyses. The flexibility it provides is crucial for meeting industrial requirements and crafting solutions tailored to our client's specific needs.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"We can use the solution to implement our tasks and models quickly."
"The most valuable feature of Azure OpenAI stems from the GPT-3.5 models it provides to its users."
"Azure OpenAI is useful for benchmarking products."
"The document intelligence feature has significantly aided in our operations, facilitating the creation of descriptive content."
"You just have to write accurate prompts according to your requirements, and the solution gives very good results."
"The most valuable feature is the ALM."
"We have many use cases for the solution, such as digitalizing records, a chatbot looking at records, and being able to use generative AI on them."
"Its ability to understand and respond well to queries, including language translation for clients, is beneficial."
"Our clients were not aware they were using TensorFlow, so that aspect was transparent. I think we personally chose TensorFlow because it provided us with more of the end-to-end package that you can use for all the steps regarding billing and our models. So basically data processing, training the model, evaluating the model, updating the model, deploying the model and all of these steps without having to change to a new environment."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions."
"Google is behind TensorFlow, and they provide excellent documentation. It's very thorough and very helpful."
"It is easy to use and learn."
"It is also totally Open-Source and free. Open-source applications are not good usually. but TensorFlow actually changed my view about it and I thought, "Look, Oh my God. This is an open-source application and it's as good as it could be." I learned that TensorFlow, by sharing their own knowledge and their own platform with other developers, it improved the lives of many people around the globe."
"It's got quite a big community, which is useful."
"The available documentation is extensive and helpful."
 

Cons

"I noticed there are no instructional videos or guides on the network portal for initial configurations. There is limited information available, and this is a concern for me. I would like to see more resources and guides to address these issues."
"The product must improve its dashboards."
"The solution needs to accommodate smaller companies."
"Maybe with the next release, the response will be more precise and more human-like."
"One major drawback of Azure OpenAI is its availability, as it's not consistently accessible for effective use."
"There are no available updates of information that are currently provided."
"Azure needs to work on its own model development and improve the integration of voice-to-text services, particularly for right-to-left languages such as Arabic and Urdu. The accuracy in these languages requires improvement."
"We are awaiting the new updates like multi-model capabilities."
"However, if I want to change just one thing in the implementation of TensorFlow functions I have to copy everything that they wrote and I change it manually if indeed it can be amended. This is really hard as it's written in C++ and has a lot of complications."
"Personally, I find it to be a bit too much AI-oriented."
"For newcomers to the field, the learning curve can be steep, often requiring about a year of dedicated effort."
"The process of creating models could be more user-friendly."
"It would be nice to have more pre-trained models that we can utilize within layers. I utilize a Mac, and I am unable to utilize AMD GPUs. That's something that I would definitely be like to be able to access within TensorFlow since most of it is with CUDA ML. This only matters for local machines because, in Azure, you can just access any GPU you want from the cloud. It doesn't really matter, but the clients that I work with don't have cloud accounts, or they don't want to utilize that or spend the money. They all see it as too expensive and want to know what they can do on their local machines."
"The solution is hard to integrate with the GPUs."
"In terms of improvement, we always look for ways they can optimize the model, accelerate the speed and the accuracy, and how can we optimize with our different techniques. There are various techniques available in TensorFlow. Maintaining accuracy is an area they should work on."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
 

Pricing and Cost Advice

"Azure OpenAI is a bit more expensive than other services."
"If you consider the long-term aspect of any project, Azure OpenAI is a costly solution."
"The licensing is interaction-based, meaning transactional. It's reasonably priced for now."
"Regarding pricing and licensing, it's a bit complex due to the minimum purchase requirement for PTO units. We're evaluating the best approach between PTE and pay-as-you-go models. Our organization is cautious about committing to PTE due to the fixed bandwidth reservation, while pay-as-you-go doesn't offer enough flexibility. We're discussing these matters with legal teams to ensure compliance and data security."
"The solution's pricing is normal worldwide but expensive in Turkey because Turkey's currency is different."
"The cost is pretty high. Even by US standards, you would find it high."
"The platform offers a flexible pricing model which depends on the features and capabilities we utilize."
"The tool costs around 20 dollars a month."
"I did not require a license for this solution. It a free open-source solution."
"I am using the open-source version of TensorFlow and it is free."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"I rate TensorFlow's pricing a five out of ten."
"We are using the free version."
"It is an open-source solution, so anyone can use it free of charge."
"The solution is free."
"TensorFlow is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
15%
Computer Software Company
13%
Manufacturing Company
11%
Educational Organization
6%
Manufacturing Company
13%
Computer Software Company
13%
University
9%
Educational Organization
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Azure OpenAI?
The product is easy to integrate with our IT workflow.
What is your experience regarding pricing and costs for Azure OpenAI?
In the past, the primary expense involved token limitations which constrained scaling. Recent iterations have increased token allowances, mitigating some challenges associated with concurrent user ...
What needs improvement with Azure OpenAI?
Azure ( /products/microsoft-azure-reviews ) could significantly benefit from including more LLM models apart from OpenAI, as I often need to switch clouds when a model doesn't meet my requirements....
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Azure OpenAI vs. TensorFlow and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.