Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.2
Reviews Sentiment
6.4
Number of Reviews
14
Ranking in other categories
AI-Agent Builders (4th)
TensorFlow
Ranking in AI Development Platforms
8th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
19
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of December 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 9.0%, down from 17.9% compared to the previous year. The mindshare of TensorFlow is 6.4%, up from 4.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Google Vertex AI9.0%
TensorFlow6.4%
Other84.6%
AI Development Platforms
 

Featured Reviews

Hamada Farag - PeerSpot reviewer
Technology Consultant at Beta Information Technology
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.
TJ
Owner at Go knowledge
Has good stability, but the process of creating models could be more user-friendly
The platform integrates well with other tools, especially Python, which we use to create models. These models can be deployed on mobile devices, which perfectly suits our requirements. It supports our AI-driven initiatives very well by producing AI models, which is its primary function. I recommend it for those seeking specialized scripting. However, it's important to consider other options as well. It is better suited for specialists in the field and is less user-friendly than general tools like Excel. I rate it overall at six out of ten. While it is a powerful tool, other software options are slightly simpler for training models.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Vertex comes with inbuilt integration with GCP for data storage."
"Google Vertex AI is better for deployment, configuration, delivery, licensing, and integration compared to other AI platforms."
"The most useful function of Google Vertex AI for me is the ease of integration, as we can easily create a prompt and integrate it into our current system."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"With just one single platform, Google Vertex AI platform, we can achieve everything; we need not switch over to multiple tools, multiple platforms, as everything can be accomplished through this one single platform for integration with existing workflows, systems, tools, and databases."
"It provides the most valuable external analytics."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"The best feature of Google Vertex AI is the ease of use, along with the integration with the rest of the Google ecosystem and the way models can be made available outside Google through endpoints."
"It is easy to use and learn."
"TensorFlow is an efficient product for building neural networks."
"TensorFlow is a framework that makes it really easy to use for deep learning."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
"Google is behind TensorFlow, and they provide excellent documentation. It's very thorough and very helpful."
"Our clients were not aware they were using TensorFlow, so that aspect was transparent. I think we personally chose TensorFlow because it provided us with more of the end-to-end package that you can use for all the steps regarding billing and our models. So basically data processing, training the model, evaluating the model, updating the model, deploying the model and all of these steps without having to change to a new environment."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"I would rate the solution an eight out of ten. I am not a developer but more of an account manager. I can find what I want with TensorFlow. I haven’t contacted technical support for any issues. Since TensorFlow is vastly documented on the internet, I usually find some good websites where people exchange their views about the solution and apply that."
 

Cons

"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"The tool's documentation is not good. It is hard."
"I'm not sure if I have suggestions for improvement."
"I think the technical documentation is not readily available in the tool."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"It takes a considerable amount of time to process, and I understand the technology behind why it takes this long, but this is something that could be reduced."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
"There are a lot of problems, such as integrating our custom code. In my experience model tuning has been a bit difficult to edit and tune the graph model for best performance. We have to go into the model but we do not have a model viewer for quick access."
"I know this is out of the scope of TensorFlow, however, every time I've sent a request, I had to renew the model into RAM and they didn't make that prediction or inference. This makes the point for the request that much longer. If they could provide anything to help in this part, it will be very great."
"I would love to have a user interface like a programming interface. You need to have a set of menus where you can put things together in a graphical interface. The complete automation of the integration of the modules would also be interesting. It’s more like plumbing as opposed to a fully automated environment."
"It doesn't allow for fast the proto-typing. So usually when we do proto-typing we will start with PyTorch and then once we have a good model that we trust, we convert it into TensorFlow. So definitely, TensorFlow is not very flexible."
"In terms of improvement, we always look for ways they can optimize the model, accelerate the speed and the accuracy, and how can we optimize with our different techniques. There are various techniques available in TensorFlow. Maintaining accuracy is an area they should work on."
"It would be cool if TensorFlow could make it easier for companies like us to program for running it across different hyperscalers."
"The solution is hard to integrate with the GPUs."
 

Pricing and Cost Advice

"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The solution's pricing is moderate."
"The price structure is very clear"
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"We are using the free version."
"The solution is free."
"TensorFlow is free."
"I am using the open-source version of TensorFlow and it is free."
"I rate TensorFlow's pricing a five out of ten."
"I did not require a license for this solution. It a free open-source solution."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
879,259 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
13%
Financial Services Firm
9%
Manufacturing Company
8%
Educational Organization
7%
Manufacturing Company
14%
Computer Software Company
11%
University
9%
Financial Services Firm
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise7
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise3
Large Enterprise3
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
I purchased Google Vertex AI directly from Google, as we are a partner of Google. I would rate the pricing for Google Vertex AI as low; the price is affordable.
What needs improvement with Google Vertex AI?
We used AutoML feature for developing AI models automatically, but we are not comfortable with the performance of those models. We have to do some fine-tuning, hyperparameter optimization, and othe...
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
What is your primary use case for TensorFlow?
I've used TensorFlow for image classification tasks, object detection tasks, and OCR.
 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Google Vertex AI vs. TensorFlow and other solutions. Updated: December 2025.
879,259 professionals have used our research since 2012.