Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
6.7
Number of Reviews
12
Ranking in other categories
AI Infrastructure (1st)
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
19
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of July 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 11.8%, down from 21.3% compared to the previous year. The mindshare of TensorFlow is 4.4%, down from 6.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Hamada Farag - PeerSpot reviewer
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.
Dan Bryant - PeerSpot reviewer
A strong solution for providing insight into machine learning strategies
I'm not a professional with machine learning. Early on, I was working with data scientists and built a platform for some old-school data scientists to turn around their models faster, and they were focused on electric prices. Based on that experience and my understanding of our value, I'm researching all the machine learning tools. I realized I would have to be a specialist in any of them, and my main skillset is in systems engineering and data engines. I look forward to being an analytics specialist. In real life, I would be better off hiring a professional because when I decide which tool I want to use for what job, I could hire that professional. They would be valuable to me across the whole of what we do. It's kinda of what I do when I build hardware and new products or do version upgrades. I hire a team just for production that are experts in their particular field, so I get production-quality pieces. At that point, my internal team can add the necessary analytics or automation. Hopefully, anyone getting the solution already knows what they will use it for. If they're starting from scratch, I strongly recommend hiring a consultant. I rate TensorFlow an eight out of ten because, for my intents and purposes, I don't know what else one can use to get into the machine learning game if you're going to export models.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"Vertex comes with inbuilt integration with GCP for data storage."
"The support is perfect and fantastic."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"It provides the most valuable external analytics."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"The integration of AutoML features streamlines our machine-learning workflows."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"TensorFlow improves my organization because our clients get a lot of investment from their investors and we are progressively improving the products. Every six months we release new features."
"Google is behind TensorFlow, and they provide excellent documentation. It's very thorough and very helpful."
"TensorFlow is an efficient product for building neural networks."
"I would rate the solution an eight out of ten. I am not a developer but more of an account manager. I can find what I want with TensorFlow. I haven’t contacted technical support for any issues. Since TensorFlow is vastly documented on the internet, I usually find some good websites where people exchange their views about the solution and apply that."
"The available documentation is extensive and helpful."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"Edge computing has some limited resources but TensorFlow has been improving in its features. It is a great tool for developers."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
 

Cons

"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"The tool's documentation is not good. It is hard."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"I'm not sure if I have suggestions for improvement."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"It would be cool if TensorFlow could make it easier for companies like us to program for running it across different hyperscalers."
"Personally, I find it to be a bit too much AI-oriented."
"It currently offers inbuilt functions, however, having the ability to implement custom libraries would enhance its usefulness for enterprise-level applications."
"In terms of improvement, we always look for ways they can optimize the model, accelerate the speed and the accuracy, and how can we optimize with our different techniques. There are various techniques available in TensorFlow. Maintaining accuracy is an area they should work on."
"The solution is hard to integrate with the GPUs."
"It would be nice if the solution was in Hungarian. I would like more Hungarian NAT models."
"The process of creating models could be more user-friendly."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
 

Pricing and Cost Advice

"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"The price structure is very clear"
"The solution's pricing is moderate."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"I did not require a license for this solution. It a free open-source solution."
"I rate TensorFlow's pricing a five out of ten."
"TensorFlow is free."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"We are using the free version."
"The solution is free."
"I am using the open-source version of TensorFlow and it is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
864,053 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
11%
Manufacturing Company
9%
Educational Organization
7%
Manufacturing Company
15%
Computer Software Company
11%
Financial Services Firm
9%
University
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
Google Vertex AI is one of the best in the market, followed by Azure AI. It can be rated at eight or nine out of ten. It is not completely mature and needs some features and functions. The interfac...
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Google Vertex AI vs. TensorFlow and other solutions. Updated: July 2025.
864,053 professionals have used our research since 2012.