Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jul 27, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
6.7
Number of Reviews
12
Ranking in other categories
AI Infrastructure (1st)
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of July 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 11.8%, down from 21.3% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.8%, down from 11.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Hamada Farag - PeerSpot reviewer
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"The support is perfect and fantastic."
"The integration of AutoML features streamlines our machine-learning workflows."
"Google Vertex AI is better for deployment, configuration, delivery, licensing, and integration compared to other AI platforms."
"It provides the most valuable external analytics."
"Vertex comes with inbuilt integration with GCP for data storage."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"The solution is very easy to use, so far as our data scientists are concerned."
"The solution is really scalable."
"The most valuable feature of Microsoft Azure Machine Learning Studio is the ease of use for starting projects. It's simple to connect and view the results. Additionally, the solution works well with other Microsoft solutions, such as Power Automate or SQL Server. It is easy to use and to connect for analytics."
"In terms of what I found most valuable in Microsoft Azure Machine Learning Studio, I especially love the designer because you can just drag and drop items there and apply the logic that's already available with the designer. I love that I can use the libraries in Microsoft Azure Machine Learning Studio, so I don't have to search for the algorithms and all the relevant libraries because I can see them directly on the designer just by dragging and dropping. Though there's a bit of work during data cleansing, that's normal and can't be avoided. At least it's easy to find the relevant algorithm, apply that algorithm to the data, then get the desired output through Microsoft Azure Machine Learning Studio. I also like the API feature of the solution which is readily available for me to expose the output to any consuming application, so that takes out a lot of headache. Otherwise, I have to have a developer who knows the API, and I have to have an API app, so all that is completely taken care of by the Microsoft Azure Machine Learning Studio designer. With the solution, I can concentrate on how to improve the data quality to get quality recommendations, so this lets me concentrate on my job rather than focusing on the regular development of APIs or the pipelines, in particular, the data pipelines pulling the data from other sources. All the data is taken care of and you can also concentrate on other required auxiliary activities rather than just concentrating on machine learning."
"Azure Machine Learning Studio's most valuable features are the package from Azure AutoML. It is quite powerful compared to the building of ML in Databricks or other AutoMLs from other companies, such as Google and Amazon."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The product's standout feature is a robust multi-file network with limited availability."
"Machine Learning Studio is easy to use."
 

Cons

"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"I think the technical documentation is not readily available in the tool."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"I'm not sure if I have suggestions for improvement."
"The tool's documentation is not good. It is hard."
"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"I think it should be made cheaper for certain people…It may appear costlier for those who don't consider time important."
"The solution cannot connect to private block storage."
"There should be data access security, a role level security. Right now, they don't offer this."
"The platform's integration feature could be better."
"Performance is very poor."
"This solution could be improved if they could integrate the data pipeline scheduling part for their interface."
"I cannot comment on specific improvements yet as we are still exploring and need more time to identify the areas that require enhancements."
"Easier customization and configuration would be beneficial."
 

Pricing and Cost Advice

"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"The solution's pricing is moderate."
"The price structure is very clear"
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The solution operates on a pay-per-use model."
"There is a license required for this solution."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"The product's pricing is reasonable."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"From a developer's perspective, I find the price of this solution high."
"The solution cost is high."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
863,901 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
11%
Manufacturing Company
9%
Educational Organization
7%
Financial Services Firm
12%
Manufacturing Company
9%
Computer Software Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
Google Vertex AI is one of the best in the market, followed by Azure AI. It can be rated at eight or nine out of ten. It is not completely mature and needs some features and functions. The interfac...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Vertex AI vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: July 2025.
863,901 professionals have used our research since 2012.