Try our new research platform with insights from 80,000+ expert users

PyTorch vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

PyTorch
Ranking in AI Development Platforms
6th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
13
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
7th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
19
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the AI Development Platforms category, the mindshare of PyTorch is 3.5%, up from 1.1% compared to the previous year. The mindshare of TensorFlow is 6.6%, up from 4.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
PyTorch3.5%
TensorFlow6.6%
Other89.9%
AI Development Platforms
 

Featured Reviews

Rohan Sharma - PeerSpot reviewer
Enabled creation of innovative projects through developer-friendly features
The aspect I like most about PyTorch is that it is really developer-friendly. Developers can constantly create new things, and everyone around the world can use it for free because it's an open-source product. What I personally like is that PyTorch has enabled users to use Apple's M1 chip natively for GPU users. Unlike other libraries using CUDA, PyTorch utilizes Metal Performance Shaders (MPS) to enable GPU usage on M1 chips.
Dan Bryant - PeerSpot reviewer
A strong solution for providing insight into machine learning strategies
I'm not a professional with machine learning. Early on, I was working with data scientists and built a platform for some old-school data scientists to turn around their models faster, and they were focused on electric prices. Based on that experience and my understanding of our value, I'm researching all the machine learning tools. I realized I would have to be a specialist in any of them, and my main skillset is in systems engineering and data engines. I look forward to being an analytics specialist. In real life, I would be better off hiring a professional because when I decide which tool I want to use for what job, I could hire that professional. They would be valuable to me across the whole of what we do. It's kinda of what I do when I build hardware and new products or do version upgrades. I hire a team just for production that are experts in their particular field, so I get production-quality pieces. At that point, my internal team can add the necessary analytics or automation. Hopefully, anyone getting the solution already knows what they will use it for. If they're starting from scratch, I strongly recommend hiring a consultant. I rate TensorFlow an eight out of ten because, for my intents and purposes, I don't know what else one can use to get into the machine learning game if you're going to export models.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's been pretty scalable in terms of using multiple GPUs."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the same technical elements, is very useful."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"For me, the product's initial setup phase is easy...For beginners, it is fairly easy to learn."
"I like that PyTorch actually follows the pythonic way, and I feel that it's quite easy. It's easy to find compared to others who require us to type a long paragraph of code."
"The framework of the solution is valuable."
"The tool is very user-friendly."
"TensorFlow improves my organization because our clients get a lot of investment from their investors and we are progressively improving the products. Every six months we release new features."
"The most valuable features are the frameworks and the functionality to work with different data, even when we have a certain quantity of data flowing."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
"Optimization is very good in TensorFlow. There are many opportunities to do hyper-parameter training."
"TensorFlow is a framework that makes it really easy to use for deep learning."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"The most valuable feature of TensorFlow is deep learning. It is the best tool for deep learning in the market."
"Edge computing has some limited resources but TensorFlow has been improving in its features. It is a great tool for developers."
 

Cons

"The product has certain shortcomings in the automation of machine learning."
"I would like a model to be available. I think Google recently released a new version of EfficientNet. It's a really good classifier, and a PyTorch implementation would be nice."
"PyTorch needs improvement in working on ARM-based chips. They have unified memory for GPU and RAM, however, current GPUs used for processing are slow."
"I do not have any complaints."
"On the production side of things, having more frameworks would be helpful."
"The product has breakdowns when we change the versions a lot."
"The training of the models could be faster."
"The analyzing and latency of compiling could be improved to provide enhanced results."
"It would be nice if the solution was in Hungarian. I would like more Hungarian NAT models."
"It would be nice to have more pre-trained models that we can utilize within layers. I utilize a Mac, and I am unable to utilize AMD GPUs. That's something that I would definitely be like to be able to access within TensorFlow since most of it is with CUDA ML. This only matters for local machines because, in Azure, you can just access any GPU you want from the cloud. It doesn't really matter, but the clients that I work with don't have cloud accounts, or they don't want to utilize that or spend the money. They all see it as too expensive and want to know what they can do on their local machines."
"It currently offers inbuilt functions, however, having the ability to implement custom libraries would enhance its usefulness for enterprise-level applications."
"JavaScript is a different thing and all the websites and web apps and all the mobile apps are built-in JavaScript. JavaScript is the core of that. However, TensorFlow is like a machine learning item. What can be improved with TensorFlow is how it can mix in how the JavaScript developers can use TensorFlow."
"However, if I want to change just one thing in the implementation of TensorFlow functions I have to copy everything that they wrote and I change it manually if indeed it can be amended. This is really hard as it's written in C++ and has a lot of complications."
"Enhancements could include increasing use cases and improving the accuracy of previously built models in TensorFlow. For instance, when we run certain models, the computing power of laptops becomes high."
"TensorFlow Lite only outputs to C."
"There are connection issues that interrupt the download needed for the data sets. We need to prepare them ourselves."
 

Pricing and Cost Advice

"PyTorch is open source."
"PyTorch is an open-source solution."
"It is free."
"The solution is affordable."
"It is free."
"PyTorch is open-sourced."
"The solution is free."
"I did not require a license for this solution. It a free open-source solution."
"I am using the open-source version of TensorFlow and it is free."
"TensorFlow is free."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"We are using the free version."
"I rate TensorFlow's pricing a five out of ten."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
872,655 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Manufacturing Company
22%
Educational Organization
10%
Comms Service Provider
10%
Performing Arts
9%
Manufacturing Company
14%
Computer Software Company
11%
Financial Services Firm
9%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise4
Large Enterprise4
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise3
Large Enterprise3
 

Questions from the Community

What is your experience regarding pricing and costs for PyTorch?
I haven't gone for a paid plan yet. I've just been using the free trial or open-source version.
What needs improvement with PyTorch?
PyTorch needs improvement in working on ARM-based chips. Although they have unified memory for GPU and RAM, they are unable to utilize these GPUs for processing efficiently. They take so much time....
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Comparisons

 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about PyTorch vs. TensorFlow and other solutions. Updated: September 2025.
872,655 professionals have used our research since 2012.