

Find out in this report how the two AI Data Analysis solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
There are licensing costs that have been saved when we moved some of the data platforms, decommissioned them, and moved on to this platform.
In terms of return on investment, I see great changes in operational effectiveness measured by RTO when comparing on-premises solutions with cloud solutions.
A specific example of the positive impact of Cloudera Data Platform is the clearly saved time and improved performance, which is the main result of it.
Consequently, we adjusted our processes to use Matillion Data Productivity Cloud only for extraction and ingestion, while Snowflake handled all transformations and jobs.
I would rate the customer support of Cloudera Data Platform ten out of ten.
I have communicated with technical support, and they are responsive and helpful.
Cloudera support is timely and responsive, adhering to the SLAs they provide.
They communicate effectively and respond quickly to all inquiries.
CDP allows for easy, mostly automated scalability where I can schedule job workflows, fine-tune system resource metrics, and add nodes with just a click.
They have the cloud burst feature available where if the on-premises capacity is not sufficient at a point in time, you can run that Spark job on the cloud itself.
The ability to scale processing capacity on demand for batch jobs without impacting other workloads, and support for a growing number of concurrent users and teams accessing the platform simultaneously are significant advantages.
Depending on the nature of data sets, volume, and mixture of different data, the scalability could be improved as manual code writing is still required.
The autoscale process works well, allowing the system to start another node automatically if the first machine reaches 80% capacity.
Sometimes the end user is not experienced or does not have all the expertise related to Cloudera specifically, making it very difficult to manage properly
Sometimes a node goes down, but it automatically returns to a healthy state.
Cloudera Data Platform is pretty stable in my experience; there are not any downtime or reliability issues.
We aim to address these issues with a Kubernetes-based platform that will simplify the task of upgrading services.
Cloudera Data Platform should include additional capabilities and features similar to those offered by other data management solutions like Azure and Databricks.
Cloudera Data Platform can be improved by addressing the feasibility of using it in the cloud; there are some complexities around the components used in cloud by Cloudera Data Platform that are not really convenient.
Connections to BigQuery for extracting information are complex.
The main areas for improvement are AI features and scalability.
Initially, CDH had a straightforward pricing model based on nodes, but CDP includes factors like processors, cores, terabytes, and drives, making it difficult to calculate costs.
We find Cloudera Data Platform to be cost-effective.
So far, I would say that it is competitive pricing that we have received.
Matillion Data Productivity Cloud offers discounts and special deals, especially when dealing with high-volume clients or fewer existing clients in specific regions, like Spain.
The pricing is moderate, neither expensive nor cheap.
By using the Hadoop File System for distributed storage, we have 1.5 petabytes of physical storage with 500 terabytes of effective storage due to a replication factor of three.
The Ranger integration makes it more flexible and reliable for me by allowing control over data access, specifying who can access at what level, such as table level, masking, or data layer level.
What stands out the most in Cloudera Manager are SDX, which provide centralized control for governance, security, and data lineage across multiple sources.
The predefined connectors eliminate the need to write code for connectivity.
Matillion Data Productivity Cloud is effective for ingest functions, particularly when moving information to Snowflake and performing many transformations.
| Product | Market Share (%) |
|---|---|
| Matillion Data Productivity Cloud | 1.1% |
| Cloudera Data Platform | 0.7% |
| Other | 98.2% |


| Company Size | Count |
|---|---|
| Small Business | 8 |
| Midsize Enterprise | 7 |
| Large Enterprise | 26 |
| Company Size | Count |
|---|---|
| Small Business | 6 |
| Midsize Enterprise | 10 |
| Large Enterprise | 11 |
Cloudera Data Platform offers a powerful fusion of Hadoop technology and user-centric tools, enabling seamless scalability and open-source flexibility. It supports large-scale data operations with tools like Ranger and Cloudera Data Science Workbench, offering efficient cluster management and containerization capabilities.
Designed to support extensive data needs, Cloudera Data Platform encompasses a comprehensive Hadoop stack, which includes HDFS, Hive, and Spark. Its integration with Ambari provides user-friendliness in management and configuration. Despite its strengths in scalability and security, Cloudera Data Platform requires enhancements in multi-tenant implementation, governance, and UI, while attribute-level encryption and better HDFS namenode support are also needed. Stability, especially regarding the Hue UI, financial costs, and disaster recovery are notable challenges. Additionally, integration with cloud storage and deployment methods could be more intuitive to enhance user experience, along with more effective support and community engagement.
What are the key features?Cloudera Data Platform is implemented extensively across industries like hospitality for data science activities, including managing historical data. Its adaptability extends to operational analytics for sectors like oil & gas, finance, and healthcare, often enhanced by Hortonworks Data Platform for data ingestion and analytics tasks.
Matillion Data Productivity Cloud features an intuitive graphical interface, seamless AWS integration, and efficient data management. Its tools streamline complex tasks for SFDC, RDS, Marketo, Facebook, and Google AdWords.
Matillion Data Productivity Cloud provides fast transformations with built-in verification, easy scheduling, and sampling. With automatic scalability and diverse data source support, it simplifies complex data tasks. Users benefit from cloud data warehousing and integrating data into Snowflake while appreciating its ease of use by non-technical teams. Enhancements can focus on frequent API adjustments, improved documentation, faster performance with less latency, and better error handling.
What are the key features of Matillion Data Productivity Cloud?
What benefits and ROI should users seek in reviews?
In industries such as technology, finance, and healthcare, Matillion Data Productivity Cloud is implemented to streamline ETL processes, optimize data pipeline construction, and enhance data migration efforts. It supports efficient data loading and integration between cloud and on-premises databases, aiding industries in managing data-driven projects.
We monitor all AI Data Analysis reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.