

Find out in this report how the two Data Management Platforms (DMP) solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
There are licensing costs that have been saved when we moved some of the data platforms, decommissioned them, and moved on to this platform.
In terms of return on investment, I see great changes in operational effectiveness measured by RTO when comparing on-premises solutions with cloud solutions.
A specific example of the positive impact of Cloudera Data Platform is the clearly saved time and improved performance, which is the main result of it.
For a lot of different tasks, including machine learning, it is a nice solution.
When it comes to big data processing, I prefer Databricks over other solutions.
I would rate the customer support of Cloudera Data Platform ten out of ten.
I have communicated with technical support, and they are responsive and helpful.
Cloudera support is timely and responsive, adhering to the SLAs they provide.
Whenever we reach out, they respond promptly.
As of now, we are raising issues and they are providing solutions without any problems.
I rate the technical support as fine because they have levels of technical support available, especially partners who get really good support from Databricks on new features.
CDP allows for easy, mostly automated scalability where I can schedule job workflows, fine-tune system resource metrics, and add nodes with just a click.
They have the cloud burst feature available where if the on-premises capacity is not sufficient at a point in time, you can run that Spark job on the cloud itself.
Integration with other tools works well for us and we successfully scaled the solution after two to three years without any issues.
The patches have sometimes caused issues leading to our jobs being paused for about six hours.
Databricks is an easily scalable platform.
I would rate the scalability of this solution as very high, about nine out of ten.
Sometimes the end user is not experienced or does not have all the expertise related to Cloudera specifically, making it very difficult to manage properly
Sometimes a node goes down, but it automatically returns to a healthy state.
Cloudera Data Platform is pretty stable in my experience; there are not any downtime or reliability issues.
They release patches that sometimes break our code.
Although it is too early to definitively state the platform's stability, we have not encountered any issues so far.
Databricks is definitely a very stable product and reliable.
We aim to address these issues with a Kubernetes-based platform that will simplify the task of upgrading services.
Cloudera Data Platform should include additional capabilities and features similar to those offered by other data management solutions like Azure and Databricks.
Cloudera Data Platform can be improved by addressing the feasibility of using it in the cloud; there are some complexities around the components used in cloud by Cloudera Data Platform that are not really convenient.
Adjusting features like worker nodes and node utilization during cluster creation could mitigate these failures.
We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly.
We use MLflow for managing MLOps, however, further improvement would be beneficial, especially for large language models and related tools.
Initially, CDH had a straightforward pricing model based on nodes, but CDP includes factors like processors, cores, terabytes, and drives, making it difficult to calculate costs.
We find Cloudera Data Platform to be cost-effective.
So far, I would say that it is competitive pricing that we have received.
It is not a cheap solution.
By using the Hadoop File System for distributed storage, we have 1.5 petabytes of physical storage with 500 terabytes of effective storage due to a replication factor of three.
The Ranger integration makes it more flexible and reliable for me by allowing control over data access, specifying who can access at what level, such as table level, masking, or data layer level.
What stands out the most in Cloudera Manager are SDX, which provide centralized control for governance, security, and data lineage across multiple sources.
Databricks' capability to process data in parallel enhances data processing speed.
The platform allows us to leverage cloud advantages effectively, enhancing our AI and ML projects.
The Unity Catalog is for data governance, and the Delta Lake is to build the lakehouse.


| Company Size | Count |
|---|---|
| Small Business | 8 |
| Midsize Enterprise | 7 |
| Large Enterprise | 25 |
| Company Size | Count |
|---|---|
| Small Business | 25 |
| Midsize Enterprise | 12 |
| Large Enterprise | 56 |
Cloudera Data Platform offers a powerful fusion of Hadoop technology and user-centric tools, enabling seamless scalability and open-source flexibility. It supports large-scale data operations with tools like Ranger and Cloudera Data Science Workbench, offering efficient cluster management and containerization capabilities.
Designed to support extensive data needs, Cloudera Data Platform encompasses a comprehensive Hadoop stack, which includes HDFS, Hive, and Spark. Its integration with Ambari provides user-friendliness in management and configuration. Despite its strengths in scalability and security, Cloudera Data Platform requires enhancements in multi-tenant implementation, governance, and UI, while attribute-level encryption and better HDFS namenode support are also needed. Stability, especially regarding the Hue UI, financial costs, and disaster recovery are notable challenges. Additionally, integration with cloud storage and deployment methods could be more intuitive to enhance user experience, along with more effective support and community engagement.
What are the key features?Cloudera Data Platform is implemented extensively across industries like hospitality for data science activities, including managing historical data. Its adaptability extends to operational analytics for sectors like oil & gas, finance, and healthcare, often enhanced by Hortonworks Data Platform for data ingestion and analytics tasks.
Databricks offers a scalable, versatile platform that integrates seamlessly with Spark and multiple languages, supporting data engineering, machine learning, and analytics in a unified environment.
Databricks stands out for its scalability, ease of use, and powerful integration with Spark, multiple languages, and leading cloud services like Azure and AWS. It provides tools such as the Notebook for collaboration, Delta Lake for efficient data management, and Unity Catalog for data governance. While enhancing data engineering and machine learning workflows, it faces challenges in visualization and third-party integration, with pricing and user interface navigation being common concerns. Despite needing improvements in connectivity and documentation, it remains popular for tasks like real-time processing and data pipeline management.
What features make Databricks unique?
What benefits can users expect from Databricks?
In the tech industry, Databricks empowers teams to perform comprehensive data analytics, enabling them to conduct extensive ETL operations, run predictive modeling, and prepare data for SparkML. In retail, it supports real-time data processing and batch streaming, aiding in better decision-making. Enterprises across sectors leverage its capabilities for creating secure APIs and managing data lakes effectively.
We monitor all Data Management Platforms (DMP) reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.