Try our new research platform with insights from 80,000+ expert users

Azure Stream Analytics vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Stream Analytics
Ranking in Streaming Analytics
4th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
30
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (21st)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Azure Stream Analytics is 7.6%, down from 12.2% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.6%, up from 4.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Azure Stream Analytics7.6%
Spring Cloud Data Flow4.6%
Other87.8%
Streaming Analytics
 

Featured Reviews

Chandra Mani - PeerSpot reviewer
Has supported real-time data validation and processing across multiple use cases but can improve consumer-side integration and streamlined customization
I widely use AKS, Azure Kubernetes Service, Azure App Service, and there are APM Gateway kinds of things. I also utilize API Management and Front Door to expose any multi-region application I have, including Web Application Firewalls, and many more—around 20 to 60 services. I use Key Vault for managing secrets and monitoring Azure App Insights for tracing and monitoring. Additionally, I employ AI search for indexer purposes, processing chatbot data or any GenAI integration. I widely use OpenAI for GenAI, integrating various models with our platform. I extensively use hybrid cloud solutions to connect on-premise cloud or cloud to another network, employing public private endpoints or private link service endpoints. Azure DevOps is also on my list, and I leverage many security concepts for end-to-end design. I consider how end users access applications to data storage and secure the entire platform for authenticated users across various use cases, including B2C, B2B, or employee scenarios. I also widely design multi-tenant applications, utilizing Azure AD or Azure AD B2C for consumers. Azure Stream Analytics reads from any real-time stream; it's designed for processing millions of records every millisecond. They utilize Event Hubs for this purpose, as it allows for event processing. After receiving data from various sources, we validate and store it in a data store. Azure Stream Analytics can consume data from Event Hubs, applying basic validation rules to determine the validity of each record before processing.
Alokik Gupta - PeerSpot reviewer
Effective microservice and task management but needs more dashboard features
The dashboards in Spring Cloud Dataflow are quite valuable. By injecting the dependency of Spring Cloud Dataflow into our Spring Boot application and annotating it with 'enable task annotation', we can manage tasks effectively. Additionally, the platform allows us to create pipelines and use microservices like a logical AND gate, giving us greater control over our microservices.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Azure Stream Analytics reads from any real-time stream; it's designed for processing millions of records every millisecond."
"Provides deep integration with other Azure resources."
"The solution's most valuable feature is its ability to create a query using SQ."
"The most valuable features of Azure Stream Analytics are the ease of provisioning and the interface is not terribly complex."
"The most valuable features are the IoT hub and the Blob storage."
"It's a product that can scale."
"I like all the connected ecosystems of Microsoft, it is really good with other BI tools that are easy to connect."
"Any time I needed assistance, they were helpful."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The product is very user-friendly."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The most valuable feature is real-time streaming."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
 

Cons

"There is a need for improvement in reprocessing or validation without custom code. Azure Stream Analytics currently allows some degree of code writing, which could be simplified with low-code or no-code platforms to enhance performance."
"Early in the process, we had some issues with stability."
"The collection and analysis of historical data could be better."
"There are too many products in the Azure landscape, which sometimes leads to overlap between them."
"One area that could use improvement is the handling of data validation. Currently, there is a review process, but sometimes the validation fails even before the job is executed. This results in wasted time as we have to rerun the job to identify the failure."
"There are too many products in the Azure landscape, which sometimes leads to overlap between them."
"The only challenge was that the streaming analytics area in Azure Stream Analytics could not meet our company's expectations, making it a component where improvements are required."
"Regarding technical support for Azure Stream Analytics, it's not good."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"The solution's community support could be improved."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"I would improve the dashboard features as they are not very user-friendly."
 

Pricing and Cost Advice

"When scaling up, the pricing for Azure Stream Analytics can get relatively high. Considering its capabilities compared to other solutions, I would rate it a seven out of ten for cost. However, we've found ways to optimize costs using tools like Databricks for specific tasks."
"Azure Stream Analytics is a little bit expensive."
"I rate the price of Azure Stream Analytics a four out of five."
"There are different tiers based on retention policies. There are four tiers. The pricing varies based on steaming units and tiers. The standard pricing is $10/hour."
"The cost of this solution is less than competitors such as Amazon or Google Cloud."
"We pay approximately $500,000 a year. It's approximately $10,000 a year per license."
"The product's price is at par with the other solutions provided by the other cloud service providers in the market."
"The current price is substantial."
"The solution provides value for money, and we are currently using its community edition."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"This is an open-source product that can be used free of charge."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
869,202 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
15%
Computer Software Company
13%
Manufacturing Company
9%
Insurance Company
6%
Financial Services Firm
24%
Computer Software Company
15%
Retailer
8%
Manufacturing Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise3
Large Enterprise18
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Azure Stream Analytics?
The solution does not need any license; it comes with your subscription.
What needs improvement with Azure Stream Analytics?
With the deployment of Azure Stream Analytics, there are many challenges. I am working with a DevOps team that I'm part of as a counselor. I'm working with them because they are working in other pa...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

ASA
No data available
 

Overview

 

Sample Customers

Rockwell Automation, Milliman, Honeywell Building Solutions, Arcoflex Automation Solutions, Real Madrid C.F., Aerocrine, Ziosk, Tacoma Public Schools, P97 Networks
Information Not Available
Find out what your peers are saying about Azure Stream Analytics vs. Spring Cloud Data Flow and other solutions. Updated: September 2025.
869,202 professionals have used our research since 2012.