Try our new research platform with insights from 80,000+ expert users

Azure Stream Analytics vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Stream Analytics
Ranking in Streaming Analytics
3rd
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
26
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
9th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (24th)
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Azure Stream Analytics is 9.8%, down from 12.6% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.9%, up from 4.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

SantiagoCordero - PeerSpot reviewer
Native connectors and integration simplify tasks but portfolio complexity needs addressing
There are too many products in the Azure landscape, which sometimes leads to overlap between them. Microsoft continuously releases new products or solutions, which can be frustrating when determining the appropriate features from one solution over another. A cost comparison between products is also not straightforward. They should simplify their portfolio. The Microsoft licensing system is confusing and not easy to understand, and this is something they should address. In the future, I may stop using Stream Analytics and move to other solutions. I discussed Palantir earlier, which is something I want to explore in depth because it allows me to accomplish more efficiently compared to solely using Azure. Additionally, the vendors should make the solution more user-friendly, incorporating low-code and no-code features. This is something I wish to explore further.
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution has a lot of functionality that can be pushed out to companies."
"Provides deep integration with other Azure resources."
"The integrations for this solution are easy to use and there is flexibility in integrating the tool with Azure Stream Analytics."
"It provides the capability to streamline multiple output components."
"The solution's technical support is good."
"Any time I needed assistance, they were helpful."
"It's scalable as a cloud product."
"It was easy for me to use from the beginning. I am accustomed to working with Microsoft."
"The product is very user-friendly."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The most valuable feature is real-time streaming."
 

Cons

"The solution doesn't handle large data packets very efficiently, which could be improved upon."
"Early in the process, we had some issues with stability."
"Its features for event imports and architecture could be enhanced."
"Easier scalability and more detailed job monitoring features would be helpful."
"More flexibility in terms of writing queries and accommodating additional facilities would be beneficial."
"The solution could be improved by providing better graphics and including support for UI and UX testing."
"Sometimes when we connect Power BI, there is a delay or it throws up some errors, so we're not sure."
"The collection and analysis of historical data could be better."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"The solution's community support could be improved."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
 

Pricing and Cost Advice

"I rate the price of Azure Stream Analytics a four out of five."
"The current price is substantial."
"The product's price is at par with the other solutions provided by the other cloud service providers in the market."
"Azure Stream Analytics is a little bit expensive."
"The cost of this solution is less than competitors such as Amazon or Google Cloud."
"The licensing for this product is payable on a 'pay as you go' basis. This means that the cost is only based on data volume, and the frequency that the solution is used."
"There are different tiers based on retention policies. There are four tiers. The pricing varies based on steaming units and tiers. The standard pricing is $10/hour."
"When scaling up, the pricing for Azure Stream Analytics can get relatively high. Considering its capabilities compared to other solutions, I would rate it a seven out of ten for cost. However, we've found ways to optimize costs using tools like Databricks for specific tasks."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"This is an open-source product that can be used free of charge."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
850,028 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
15%
Financial Services Firm
14%
Manufacturing Company
10%
Retailer
6%
Financial Services Firm
26%
Computer Software Company
18%
Retailer
7%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Azure Stream Analytics?
I have no problem with pricing. We sell the data analytics value and operational value to customers, focusing on productivity and efficiency from the cloud, rather than just the infrastructure or p...
What needs improvement with Azure Stream Analytics?
There is a lack of technical support from Microsoft's local office, particularly in Taiwan. We often have to learn online, and language can be a communication barrier since not many IT staff can sp...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

ASA
No data available
 

Overview

 

Sample Customers

Rockwell Automation, Milliman, Honeywell Building Solutions, Arcoflex Automation Solutions, Real Madrid C.F., Aerocrine, Ziosk, Tacoma Public Schools, P97 Networks
Information Not Available
Find out what your peers are saying about Azure Stream Analytics vs. Spring Cloud Data Flow and other solutions. Updated: April 2025.
850,028 professionals have used our research since 2012.