Try our new research platform with insights from 80,000+ expert users

Apache Kafka vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Kafka
Ranking in Streaming Analytics
8th
Average Rating
8.2
Reviews Sentiment
6.9
Number of Reviews
87
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
9th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (24th)
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Apache Kafka is 2.8%, up from 1.9% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.9%, up from 4.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Snehasish Das - PeerSpot reviewer
Data streaming transforms real-time data movement with impressive scalability
I worked with Apache Kafka for customers in the financial industry and OTT platforms. They use Kafka particularly for data streaming. Companies offering movie and entertainment as a service, similar to Netflix, use Kafka Apache Kafka offers unique data streaming. It allows the use of data in…
NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I like Kafka's flexibility, stability, reliability, and robustness."
"Apache Kafka is effective when dealing with large volumes of data flowing at high speeds, requiring real-time processing."
"I have seen a return on investment with this solution."
"It's an open-source product, which means it doesn't cost us anything to use it."
"It is easy to configure."
"The high availability is valuable. It is robust, and we can rely on it for a huge amount of data."
"I use it for real-time processing workloads. So, in some instances, it's like IoT data. We need to put it into a data lake."
"Its availability is brilliant."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The most valuable feature is real-time streaming."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The product is very user-friendly."
 

Cons

"Kafka is complex and there is a little bit of a learning curve."
"As an open-source project, Kafka is still fairly young and has not yet built out the stability and features that other open-source projects have acquired over the many years. If done correctly, Kafka can also take over the stream-processing space that technologies such as Apache Storm cover."
"The solution could always add a few more features to enhance its usage."
"Observability could be improved."
"For the original Kafka, there is room for improvement in terms of latency spikes and resource consumption. It consumes a lot of memory."
"The third party is not very stable and sometimes you have problems with this component. There are some developments in newer versions and we're about to try them out, but I'm not sure if it closes the gap."
"Some vendors don't offer extra features for monitoring."
"Maintaining and configuring Apache Kafka can be challenging, especially when you want to fine-tune its behavior."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The solution's community support could be improved."
"I would improve the dashboard features as they are not very user-friendly."
 

Pricing and Cost Advice

"Apache Kafka is an open-source solution."
"Apache Kafka is an open-source solution."
"Apache Kafka has an open-source pricing."
"This is an open-source version."
"I was using the product's free version."
"The solution is free, it is open-source."
"It is open source software."
"The cost can vary depending on the provider and the specific flavor or version you use. I'm not very knowledgeable about the pricing details."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
850,028 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
31%
Computer Software Company
12%
Manufacturing Company
7%
Retailer
6%
Financial Services Firm
26%
Computer Software Company
18%
Retailer
7%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What are the differences between Apache Kafka and IBM MQ?
Apache Kafka is open source and can be used for free. It has very good log management and has a way to store the data used for analytics. Apache Kafka is very good if you have a high number of user...
What do you like most about Apache Kafka?
Apache Kafka is an open-source solution that can be used for messaging or event processing.
What is your experience regarding pricing and costs for Apache Kafka?
Its pricing is reasonable. It's not always about cost, but about meeting specific needs.
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Overview

 

Sample Customers

Uber, Netflix, Activision, Spotify, Slack, Pinterest
Information Not Available
Find out what your peers are saying about Apache Kafka vs. Spring Cloud Data Flow and other solutions. Updated: April 2025.
850,028 professionals have used our research since 2012.