Try our new research platform with insights from 80,000+ expert users

Apache Kafka on Confluent Cloud vs Upsolver comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Kafka on Confluent C...
Ranking in Streaming Analytics
12th
Average Rating
8.6
Reviews Sentiment
5.6
Number of Reviews
15
Ranking in other categories
No ranking in other categories
Upsolver
Ranking in Streaming Analytics
20th
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
3
Ranking in other categories
Data Integration (37th)
 

Mindshare comparison

As of January 2026, in the Streaming Analytics category, the mindshare of Apache Kafka on Confluent Cloud is 0.5%. The mindshare of Upsolver is 0.7%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Kafka on Confluent Cloud0.5%
Upsolver0.7%
Other98.8%
Streaming Analytics
 

Featured Reviews

AF
Lead Software Engineer at a tech vendor with 10,001+ employees
Has unified log streams from multiple systems and accelerated issue tracking through streamlined setup
I think Apache Kafka on Confluent Cloud can be improved by probably working more around Confluent or the tool. In my opinion, it should utilize the response structures in a better way or be able to detect if there is any variable or if there is any data structure that is mismatched, as it would be easier than us manually having to put in the exact name in order for it to match the response. Regarding additional improvements, I would say probably around error handling, where when we encounter errors specific to our response structures and everything, or the tables or anything of that nature, it would be better if we were prompted with better error handling mechanisms. I do not think there are any other improvements Apache Kafka on Confluent Cloud needs, aside from error handling and response structures.
reviewer2784462 - PeerSpot reviewer
Software Engineer at a tech vendor with 10,001+ employees
Streaming pipelines have become simpler and onboarding new data sources is now much faster
One of the best features Upsolver offers is the automatic schema evolution. Another good feature is SQL-based streaming transformations. Complex streaming transformations such as cleansing, deduplication, and enrichment were implemented using SQL and drastically reduced the need for custom Spark code. My experience with the SQL-based streaming transformations in Upsolver is that it had a significant positive impact on the overall data engineering workflow. By replacing custom Spark streaming jobs with declarative SQL logic, I simplified development, review, and deployment processes. Data transformations such as parsing, filtering, enrichment, and deduplication could be implemented and modified quickly without rebuilding or redeploying complex code-based pipelines. Upsolver has impacted my organization positively because it brings many benefits. The first one is faster onboarding of new data sources. Another one is more reliable streaming pipelines. Another one is near-real-time data availability, which is very important for us. It also reduced operational effort for data engineering teams. A specific outcome that highlights these benefits is that the time to onboard new sources is reduced from weeks to days. Custom Spark code reduction reached 50 to 40 percent. Pipeline failures are reduced by 70 to 80 percent. Data latency is improved from hours to minutes.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's very fast and helps us to create the project, guarantee the message delivery, and the performance."
"Confluent helped me to streamline all those logs into one place, and then I was consuming those logs that were produced, which made it very much easier because I know Kafka and using Confluent made it much simpler."
"The state-saving feature is very much appreciated. It allows me to rewind a certain process if I see an error and then reprocess it."
"Confluent Cloud handles data volume pretty well."
"Kafka and Confluent Cloud have proven to be cost-effective, especially when compared to other tools. In a recent BI integration program over the past year, we assessed multiple use cases spanning ship-to-shore and various Azure integrations. Our findings revealed that Confluent Kafka performed exceptionally well, standing out alongside Genesys and Azure Event Hubs. While these three are top contenders, the choice among other tools depends on the specific use case and project requirements. The customer initially used tools like SMQs, FITRA, and Stream for real-time data processing. However, after our recommendation, Confluent Cloud proved to be a superior choice, capable of replacing these three tools and simplifying their data infrastructure. This shift to a single tool, Confluent Cloud, streamlined their operations, making maintenance and management more efficient for their internal projects."
"In case of huge transactions on the web or mobile apps, it helps you capture real-time data and analyze it."
"Some of the best features with Apache Kafka on Confluent Cloud are streaming and event capabilities, which are important due to scalability and resiliency."
"The product's installation phase is pretty straightforward for us since we know how to use it."
"It was easy to use and set up, with a nearly no-code interface that relied mostly on drag-and-drop functionality."
"Customer service is excellent, and I would rate it between eight point five to nine out of ten."
"A specific outcome that highlights these benefits is that the time to onboard new sources is reduced from weeks to days, custom Spark code reduction reached 50 to 40 percent, pipeline failures are reduced by 70 to 80 percent, and data latency is improved from hours to minutes."
"The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies."
 

Cons

"I thought Confluent would stop me when I crossed the credits, but it did not, and then I got charged."
"There could be an in-built feature for data analysis."
"The clustering is a little hard for juniors and clients. It's suitable for senior engineers, but the configuration and clustering are very hard for juniors."
"The administration port could be more extensive."
"Regarding real-time data usage, there were challenges with CDC (Change Data Capture) integrations. Specifically, with PyTRAN, we encountered difficulties. We recommended using our on-premises Kaspersky as an alternative to PyTRAN for that specific use case due to issues with CDC store configuration and log reading challenges with the iton components."
"There's one thing that's a common use case, but I don't know why it's not covered in Kafka. When a message comes in, and another message with the same key arrives, the first version should be deleted automatically."
"In terms of improvements, observability and monitoring are areas that could be enhanced. They are lacking in terms of observability and monitoring compared to other products."
"Maybe in terms of Apache Kafka's integration with other Microsoft tools, our company faced some challenges."
"On the stability side, I would rate it seven out of ten. Using multiple cloud providers and data engineering technologies creates complexity, and managing different plugins is not always easy, but they are working on it."
"There is room for improvement in query tuning."
"Upsolver excels in ETL and data aggregation, while ThoughtSpot is strong in natural language processing for querying datasets. Combining these tools can be very effective: Upsolver handles aggregation and ETL, and ThoughtSpot allows for natural language queries. There’s potential for highlighting these integrations in the future."
"I think that Upsolver can be improved in orchestration because it is not a full orchestration tool."
 

Pricing and Cost Advice

"Regarding pricing, Apache Kafka on Confluent Cloud is not a cheap tool. The right use case would justify the cost. It might make sense if you have a high volume of data that you can leverage to generate value for the business. But if you don't have those requirements, there are likely cheaper solutions you could use instead."
"I think the pricing is fair, but Confluent requires a little bit more thinking because the price can go up really quickly when it comes to premium connectors."
"I consider that the product's price falls under the middle range category."
"Upsolver is affordable at approximately $225 per terabyte per year."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
12%
Manufacturing Company
8%
Comms Service Provider
6%
Insurance Company
5%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business6
Midsize Enterprise3
Large Enterprise8
No data available
 

Questions from the Community

What needs improvement with Apache Kafka on Confluent Cloud?
I think Apache Kafka on Confluent Cloud can be improved by probably working more around Confluent or the tool. In my opinion, it should utilize the response structures in a better way or be able to...
What is your primary use case for Apache Kafka on Confluent Cloud?
I have used Apache Kafka on Confluent Cloud for one of my projects with regard to log monitoring. My main use case for Apache Kafka on Confluent Cloud in that project was mainly streaming of the lo...
What advice do you have for others considering Apache Kafka on Confluent Cloud?
My advice to others looking into using Apache Kafka on Confluent Cloud is that it is easier and has a low learning curve. If there is any use case regarding streaming, I would suggest starting off ...
What is your experience regarding pricing and costs for Upsolver?
Upsolver is affordable at approximately $225 per terabyte per year. Compared to what I know from others, it's cheaper than many other products.
What needs improvement with Upsolver?
There is room for improvement in query tuning. Upsolver could do a more in-depth analysis in employing machine power, such as CPU and memory, to enhance query performance. Furthermore, allocating C...
What is your primary use case for Upsolver?
I am working as a consultant and currently have my own consultancy services. I provide services to companies that are data-heavy and looking for data engineering solutions for their business needs....
 

Overview

Find out what your peers are saying about Apache Kafka on Confluent Cloud vs. Upsolver and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.