Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Apache Kafka on Confluent Cloud comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Apache Kafka on Confluent C...
Ranking in Streaming Analytics
10th
Average Rating
8.4
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 14.5%, up from 9.9% compared to the previous year. The mindshare of Apache Kafka on Confluent Cloud is 0.0%. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Ritik Varshney - PeerSpot reviewer
Enhanced data streaming with reliable features and good analytics
Apache Kafka on Confluent Cloud provides an enhanced level of reliability and resources compared to Apache Kafka alone. It offers more features which are beneficial for our clients, including cluster linking, schema registry, error handling, and dead-letter queues. It significantly improves customer and publisher satisfaction, especially with topic integration and data streaming.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"What I appreciate best about Apache Flink is that it's open source and geared towards a distributed stream processing framework."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"Easy to deploy and manage."
"Allows us to process batch data, stream to real-time and build pipelines."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"Confluent Cloud handles data volume pretty well."
"In case of huge transactions on the web or mobile apps, it helps you capture real-time data and analyze it."
"Apache Kafka on Confluent Cloud is more reliable and frequent to use compared to Apache Kafka."
"Kafka provides handy properties that allow us to directly configure the data, whether to keep it or discard it after use."
"The product's installation phase is pretty straightforward for us since we know how to use it."
"The state-saving feature is very much appreciated. It allows me to rewind a certain process if I see an error and then reprocess it."
"Overall, I think it's a good experience. Apache Kafka can be quite complex and difficult to maintain on your own, so using Apache Kafka on Confluent Cloud makes it much easier to use it without worrying about setup and maintenance."
"Kafka and Confluent Cloud have proven to be cost-effective, especially when compared to other tools. In a recent BI integration program over the past year, we assessed multiple use cases spanning ship-to-shore and various Azure integrations. Our findings revealed that Confluent Kafka performed exceptionally well, standing out alongside Genesys and Azure Event Hubs. While these three are top contenders, the choice among other tools depends on the specific use case and project requirements. The customer initially used tools like SMQs, FITRA, and Stream for real-time data processing. However, after our recommendation, Confluent Cloud proved to be a superior choice, capable of replacing these three tools and simplifying their data infrastructure. This shift to a single tool, Confluent Cloud, streamlined their operations, making maintenance and management more efficient for their internal projects."
 

Cons

"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"There is a learning curve. It takes time to learn."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"Apache Flink's documentation should be available in more languages."
"The solution could be more user-friendly."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"Some areas for improvement in Apache Kafka on Confluent Cloud include issues faced during migration with Kubernetes pods."
"There's one thing that's a common use case, but I don't know why it's not covered in Kafka. When a message comes in, and another message with the same key arrives, the first version should be deleted automatically."
"The administration port could be more extensive."
"There could be an in-built feature for data analysis."
"Regarding real-time data usage, there were challenges with CDC (Change Data Capture) integrations. Specifically, with PyTRAN, we encountered difficulties. We recommended using our on-premises Kaspersky as an alternative to PyTRAN for that specific use case due to issues with CDC store configuration and log reading challenges with the iton components."
"The solution is expensive."
"There are some premium connectors, for example, available in Confluent, which you cannot access in the marketplace, so there are some limitations."
"Maybe in terms of Apache Kafka's integration with other Microsoft tools, our company faced some challenges."
 

Pricing and Cost Advice

"It's an open source."
"It's an open-source solution."
"The solution is open-source, which is free."
"This is an open-source platform that can be used free of charge."
"Apache Flink is open source so we pay no licensing for the use of the software."
"Regarding pricing, Apache Kafka on Confluent Cloud is not a cheap tool. The right use case would justify the cost. It might make sense if you have a high volume of data that you can leverage to generate value for the business. But if you don't have those requirements, there are likely cheaper solutions you could use instead."
"I think the pricing is fair, but Confluent requires a little bit more thinking because the price can go up really quickly when it comes to premium connectors."
"I consider that the product's price falls under the middle range category."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
865,164 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Computer Software Company
12%
Retailer
8%
Manufacturing Company
7%
Financial Services Firm
14%
Manufacturing Company
7%
Computer Software Company
6%
Government
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
What do you like most about Apache Kafka on Confluent Cloud?
Kafka and Confluent Cloud have proven to be cost-effective, especially when compared to other tools. In a recent BI integration program over the past year, we assessed multiple use cases spanning s...
What needs improvement with Apache Kafka on Confluent Cloud?
I think what I would improve about the solution is the cost, mostly. From my standpoint, it's the cost. From an engineering perspective, it works really well. There's always room for improvement. O...
What is your primary use case for Apache Kafka on Confluent Cloud?
We find that the best features include using the CDC functionality with the connector to take the data from our SQL database and publish it to many consumers. Any changes enable us to easily publis...
 

Also Known As

Flink
No data available
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Information Not Available
Find out what your peers are saying about Apache Flink vs. Apache Kafka on Confluent Cloud and other solutions. Updated: August 2025.
865,164 professionals have used our research since 2012.