Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
6th
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
89
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.8%, up from 9.6% compared to the previous year. The mindshare of Databricks is 14.6%, up from 10.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
A great solution with an intricate system and allows for batch data processing
We value this solution's intricate system because it comes with a state inside the mechanism and product. The system allows us to process batch data, stream to real-time and build pipelines. Additionally, we do not need to process data from the beginning when we pause, and we can continue from the same point where we stopped. It helps us save time as 95% of our pipelines will now be on Amazon, and we'll save money by saving time.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"This is truly a real-time solution."
"The documentation is very good."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"It is user-friendly and the reporting is good."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"Easy to deploy and manage."
"Apache Flink's best feature is its data streaming tool."
"The solution is an impressive tool for data migration and integration."
"The initial setup phase of Databricks was good."
"The most valuable feature of Databricks is the integration with Microsoft Azure."
"It offers AI functionalities that assist with code management and machine learning processes."
"It is fast, it's scalable, and it does the job it needs to do."
"The integration with Python and the notebooks really helps."
"The initial setup is pretty easy."
"I work in the data science field and I found Databricks to be very useful."
 

Cons

"The solution could be more user-friendly."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"There is a learning curve. It takes time to learn."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"The machine learning library is not very flexible."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"The product should incorporate more learning aspects. It needs to have a free trial version that the team can practice."
"We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller."
"There are no direct connectors — they are very limited."
"A lot of people are required to manage this solution."
"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"Costs can quickly add up if you don't plan for it."
"We'd like a more visual dashboard for analysis It needs better UI."
"The Databricks cluster can be improved."
 

Pricing and Cost Advice

"The solution is open-source, which is free."
"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"The basic version of this solution is now open-source, so there are no license costs involved. However, there is a charge for any advanced functionality and this can be quite expensive."
"We implement this solution on behalf of our customers who have their own Azure subscription and they pay for Databricks themselves. The pricing is more expensive if you have large volumes of data."
"Databricks are not costly when compared with other solutions' prices."
"The solution requires a subscription."
"The solution is a good value for batch processing and huge workloads."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"I would rate the tool’s pricing an eight out of ten."
"Licensing on site I would counsel against, as on-site hardware issues tend to really delay and slow down delivery."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
15%
Manufacturing Company
7%
Retailer
5%
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Flink
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Flink vs. Databricks and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.