Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Software AG Apama comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
7th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Software AG Apama
Ranking in Streaming Analytics
23rd
Average Rating
7.0
Reviews Sentiment
6.6
Number of Reviews
1
Ranking in other categories
CEP (1st)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.6%, up from 3.4% compared to the previous year. The mindshare of Software AG Apama is 0.5%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Spark Streaming3.6%
Software AG Apama0.5%
Other95.9%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
SP
A tool to send out promotional notifications that need to improve areas, like deployment and maintenance
Software AG Apama should support offline scenarios as it may not always be possible to stay connected with the cloud. The solution should be deployed on an on-premises model, and it should be able to handle offline scenarios. If certain rules are set in Software AG Apama, then it should be able to execute them without being connected to an open internet source. With Software AG Apama, one may face challenges since it is difficult to find people with the right skill set to operate it. The solution also makes use of a proprietary programming language that is hard to trace in the market. It is better to go with the new options available in the market since Software AG Apama has become an old product. The ease of development and maintenance should be enhanced, but it is difficult due to the use of the proprietary programming language in the product.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"As an open-source solution, using it is basically free."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"The most valuable feature of the solution is the ability that it provides its users to handle different kinds of rules."
 

Cons

"The solution itself could be easier to use."
"We would like to have the ability to do arbitrary stateful functions in Python."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"It was resource-intensive, even for small-scale applications."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"In terms of improvement, the UI could be better."
"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
"Integrating event-level streaming capabilities could be beneficial."
"The ease of development and maintenance should be enhanced, but it is difficult due to the use of the proprietary programming language in the product."
 

Pricing and Cost Advice

"People pay for Apache Spark Streaming as a service."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Spark is an affordable solution, especially considering its open-source nature."
"I was using the open-source community version, which was self-hosted."
"A commercial license is required to operate Software AG Apama."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
870,701 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
22%
Financial Services Firm
20%
Healthcare Company
7%
University
5%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
No data available
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
What do you like most about Software AG Apama?
The most valuable feature of the solution is the ability that it provides its users to handle different kinds of rules.
What is your experience regarding pricing and costs for Software AG Apama?
A commercial license is required to operate Software AG Apama.
What needs improvement with Software AG Apama?
Software AG Apama should support offline scenarios as it may not always be possible to stay connected with the cloud. The solution should be deployed on an on-premises model, and it should be able ...
 

Also Known As

Spark Streaming
Progress Apama
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Okasan Online Securities
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Confluent and others in Streaming Analytics. Updated: September 2025.
870,701 professionals have used our research since 2012.