Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Confluent comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Confluent
Ranking in Streaming Analytics
5th
Average Rating
8.2
Reviews Sentiment
6.3
Number of Reviews
25
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.9%, up from 3.1% compared to the previous year. The mindshare of Confluent is 6.8%, down from 8.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Confluent6.8%
Apache Spark Streaming3.9%
Other89.3%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Sr Project Manager at Raj Subhatech
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
PavanManepalli - PeerSpot reviewer
AVP - Sr Middleware Messaging Integration Engineer at Wells Fargo
Has supported streaming use cases across data centers and simplifies fraud analytics with SQL-based processing
I recommend that Confluent should improve its solution to keep up with competitors in the market, such as Solace and other upcoming tools such as NATS. Recently, there has been a lot of buzz about Confluent charging high fees while not offering features that match those of other tools. They need to improve in that direction by not only reducing costs but also providing better solutions for the problems customers face to avoid frustrations, whether through future enhancement requests or ensuring product stability. The cost should be worked on, and they should provide better solutions for customers. Solutions should focus on hierarchical topics; if a customer has different types of data and sources, they should be able to send them to the same place for analytics. Currently, Confluent requires everything to send to the same topic, which becomes very large and makes running analytics difficult. The hierarchy of topics should be improved. This part is available in MQ and other products such as Solace, but it is missing in Confluent, leading many in capital markets and trading to switch to Solace. In terms of stability, it is not the stability itself that needs improvement but rather the delivery semantics. Other products offer exactly-once delivery out of the box, whereas Confluent states it will offer this but lacks the knobs or levers for tuning configurations effectively. Confluent has hundreds of configurations that application teams must understand, which creates a gap. Users are often unaware of what values to set for better performance or to achieve exactly-once semantics, making it difficult to navigate through them. Delivery semantics also need to be worked on.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"For Apache Spark Streaming, the feature I appreciated most is that it provides live data delivery; additionally, it provides the capability to send a larger amount of data in parallel."
"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"The solution is better than average and some of the valuable features include efficiency and stability."
"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"It's the fastest solution on the market with low latency data on data transformations."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"The monitoring module is impressive."
"The documentation process is fast with the tool."
"I find Confluent's Kafka Connectors and Kafka Streams invaluable for my use cases because they simplify real-time data processing and ETL tasks by providing reliable, pre-packaged connectors and tools."
"I would rate the scalability of the solution at eight out of ten. We have 20 people who use Confluent in our organization now, and we hope to increase usage in the future."
"Some of the best features are that it's very quick to set up, very easy to have a centralized area that gives us a history of changes, and the ability to give feedback on any information placed onto the pages."
"It is also good for knowledge base management."
"We ensure seamless management of Kafka through Confluent, allowing all of our Kafka activities to be handled by a third party."
"Confluent facilitates the messaging tasks with Kafka, streamlining our processes effectively."
 

Cons

"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
"We would like to have the ability to do arbitrary stateful functions in Python."
"It was resource-intensive, even for small-scale applications."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"It could have more themes. They should also have more reporting-oriented plugins as well. It would be great to have free custom reports that can be dispatched directly from Jira."
"Recently, there has been a lot of buzz about Confluent charging high fees while not offering features that match those of other tools."
"It could have more integration with different platforms."
"Currently, in the early stages, I see a gap on the security side. If you are using the SaaS version, we would like to get a fuller, more secure solution that can be adopted right out of the box. Confluence could do a better job sharing best practices or a reusable pattern that others have used, especially for companies that can not afford to hire professional services from Confluent."
"One area we've identified that could be improved is the governance and access control to the Kafka topics. We've found some limitations, like a threshold of 10,000 rules per cluster, that make it challenging to manage access at scale if we have many different data sources."
"There is no local support team in Saudi Arabia."
"It would help if the knowledge based documents in the support portal could be available for public use as well."
"there is room for improvement in the visualization."
 

Pricing and Cost Advice

"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Spark is an affordable solution, especially considering its open-source nature."
"People pay for Apache Spark Streaming as a service."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is low pricing and ten is high pricing, I would rate Confluent's pricing at five. I have not encountered any additional costs."
"It comes with a high cost."
"The solution is cheaper than other products."
"Confluent is highly priced."
"Regarding pricing, I think Confluent is a premium product, but it's hard for me to say definitively if it's overly expensive. We're still trying to understand if the features and reduced maintenance complexity justify the cost, especially as we scale our platform use."
"You have to pay additional for one or two features."
"The pricing model of Confluent could improve because if you have a classic use case where you're going to use all the features there is no plan to reduce the features. You should be able to pick and choose basic services at a reduced price. The pricing was high for our needs. We should not have to pay for features we do not use."
"Confluent is expensive, I would prefer, Apache Kafka over Confluent because of the high cost of maintenance."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,515 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
21%
Financial Services Firm
20%
University
6%
Marketing Services Firm
6%
Financial Services Firm
16%
Computer Software Company
11%
Retailer
9%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business6
Midsize Enterprise4
Large Enterprise16
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
What do you like most about Confluent?
I find Confluent's Kafka Connectors and Kafka Streams invaluable for my use cases because they simplify real-time data processing and ETL tasks by providing reliable, pre-packaged connectors and to...
What is your experience regarding pricing and costs for Confluent?
They charge a lot for scaling, which makes it expensive.
What needs improvement with Confluent?
I recommend that Confluent should improve its solution to keep up with competitors in the market, such as Solace and other upcoming tools such as NATS. Recently, there has been a lot of buzz about ...
 

Also Known As

Spark Streaming
No data available
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
ING, Priceline.com, Nordea, Target, RBC, Tivo, Capital One, Chartboost
Find out what your peers are saying about Apache Spark Streaming vs. Confluent and other solutions. Updated: December 2025.
881,515 professionals have used our research since 2012.