Try our new research platform with insights from 80,000+ expert users

Apache Pulsar vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Pulsar
Ranking in Streaming Analytics
21st
Average Rating
8.0
Reviews Sentiment
6.2
Number of Reviews
1
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
16
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of September 2025, in the Streaming Analytics category, the mindshare of Apache Pulsar is 2.3%, up from 1.9% compared to the previous year. The mindshare of Apache Spark Streaming is 3.6%, up from 3.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Spark Streaming3.6%
Apache Pulsar2.3%
Other94.1%
Streaming Analytics
 

Featured Reviews

it_user1087029 - PeerSpot reviewer
The solution can mimic other APIs without changing a line of code
The solution operates as a classic message broker but also as a streaming platform. It operates differently than a traditional streaming platform with storage and computing handled separately. It scales easier and better than Kafka which can be stubborn. You can even make it act like Kafka because it understands Kafka APIs. There are even companies that will sell you Kafka but underneath it is Apache Pulsar. The solution is very compatible because it can mimic other APIs without changing a line of code.
Himansu Jena - PeerSpot reviewer
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution operates as a classic message broker but also as a streaming platform."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"For Apache Spark Streaming, the feature I appreciated most is that it provides live data delivery; additionally, it provides the capability to send a larger amount of data in parallel."
"By integrating Apache Spark Streaming, the data freshness rate, and latency have significantly improved from 24-hour batch processing to less than one minute, facilitating faster communication to downstream systems, aiding marketing campaigns."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"With Apache Spark Streaming, you can have multiple kinds of windows; depending on your use case, you can select either a tumbling window, a sliding window, or a static window to determine how much data you want to process at a single point of time."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"As an open-source solution, using it is basically free."
"The solution is better than average and some of the valuable features include efficiency and stability."
 

Cons

"Documentation is poor because much of it is in Chinese with no English translation."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"We don't have enough experience to be judgmental about its flaws."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"Monitoring is an area where they could definitely improve Apache Spark Streaming. When you have a streaming application, it generates numerous logs. After some time, the logs become meaningless because they're quite large and impossible to open."
"In terms of improvement, the UI could be better."
"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
 

Pricing and Cost Advice

Information not available
"People pay for Apache Spark Streaming as a service."
"Spark is an affordable solution, especially considering its open-source nature."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
867,349 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
20%
Financial Services Firm
12%
Comms Service Provider
8%
Manufacturing Company
7%
Computer Software Company
23%
Financial Services Firm
21%
Healthcare Company
5%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise7
 

Questions from the Community

Ask a question
Earn 20 points
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based...
What is your primary use case for Apache Spark Streaming?
I use Apache Spark Streaming for GIS (Graphical Information System), satellite imaging processing, image processing, longitude, latitude, and predicting electricity, road, and transformations in th...
 

Also Known As

No data available
Spark Streaming
 

Overview

 

Sample Customers

Information Not Available
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Confluent and others in Streaming Analytics. Updated: August 2025.
867,349 professionals have used our research since 2012.