Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Starburst Enterprise comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
28
Ranking in other categories
No ranking in other categories
Starburst Enterprise
Ranking in Streaming Analytics
15th
Average Rating
8.6
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
Data Science Platforms (12th)
 

Mindshare comparison

As of August 2025, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 7.6%, down from 12.1% compared to the previous year. The mindshare of Starburst Enterprise is 3.6%, up from 1.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Prabin Silwal - PeerSpot reviewer
Pipeline setup is very simple
I am not exactly sure about where improvements are needed in the tool. When I was working on the tool, it was very scalable, and the only thing we needed in our company was temporary streaming stuff that could work well. We didn't want to set up our own Kafka, other queues, or processing systems. As it is a cloud tool, it is easy for us to use the tool, and it satisfies all our requirements. Maybe for the other cases, if we need, then it may need some improvements. The tool satisfies our particular needs. Currently, the pipeline setup is very simple. For our particular use cases, it is because we just want to get the data and send it to the different data lakes or some logging system. Previously, we also used Amazon Kinesis to log those to Splunk, and later on, we removed Splunk and transferred that to Datadog. For our use cases, I don't want any new features in the tool. Amazon Kinesis' use case is for collecting, processing, and analyzing. If anything can be added to the tool, then I feel one should be able to use the same kind of tool so that everything is there in the product, like an alert system, and so that one can analyze, make a query, and do sourcing from the solution itself rather than using other logging and monitoring systems. The tool should focus on having an alert system rather than having to use a third-party solution. We can just get the data over Amazon Kinesis, and we can directly use all the benefits of current analytical tools, like in the areas involving BI, Looker, and Tableau. One would not need to buy the aforementioned tools, and we can just get started with Amazon Kinesis.
KamleshPant - PeerSpot reviewer
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The management and analytics are valuable features."
"Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive."
"Kinesis is a fully managed program streaming application. You can manage any infrastructure. It is also scalable. Kinesis can handle any amount of data streaming and process data from hundreds, thousands of processes in every source with very low latency."
"What turns out to be most valuable is its integration with Lambda functions because you can process the data as it comes in. As soon as data comes, you'll fire a Lambda function to process a trench of data."
"The product's initial setup phase is not difficult because we are using the tool on the cloud."
"The Kinesis VideoStream and DataStream are the most important features."
"The solution has the capacity to store the data anywhere from one day to a week and provides limitless storage for us."
"I find almost all features valuable, especially the timing and fast pace movement."
"It's very scalable, fast performing, and supports many catalogs."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
 

Cons

"Snapshot from the the from the the stream of the data analytic I have already on the cloud, do a snapshot to not to make great or to get the data out size of the web service. But to stop the process and restart a few weeks later when I have more data or more available of the client teams."
"Amazon Kinesis should improve its limits."
"Amazon Kinesis could improve its pricing to be more competitive, especially for large volumes."
"AI processing or cleaning up data would be nice since I don't think it is a feature in Amazon Kinesis right now."
"There could be valid data in Kinesis that is not being processed, which affects stability. Although it rarely happens, this issue has been observed in many deployments, making it not completely stable."
"Kinesis is good for Amazon Cloud but not as suitable for other cloud vendors."
"There are some kind of hard limits on Amazon Kinesis, and if you hit that, then you will get the throughput exceed error."
"Kinesis can be expensive, especially when dealing with large volumes of data."
"There should be support for REST API data sources to access data from the web."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
 

Pricing and Cost Advice

"I rate the product price a five on a scale of one to ten, where one is cheap, and ten is expensive."
"In general, cloud services are very convenient to use, even if we have to pay a bit more, as we know what we are paying for and can focus on other tasks."
"I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool."
"The pricing depends on the use cases and the level of usage. If you wanted to use Kinesis for different use cases, there's definitely a cheaper base cost involved. However, it's not entirely cheap, as different use cases might require different levels of Kinesis usage."
"The product falls on a bit of an expensive side."
"The tool's entry price is cheap. However, pricing increases with data volume."
"Under $1,000 per month."
"The solution's pricing is fair."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
865,384 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
18%
Financial Services Firm
17%
Manufacturing Company
10%
Educational Organization
5%
Financial Services Firm
43%
Computer Software Company
8%
Energy/Utilities Company
5%
Government
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
Amazon Kinesis and Lambda pricing is competitive, but we noticed that scaling and large volumes could potentially increase costs significantly.
What needs improvement with Amazon Kinesis?
Amazon Kinesis could improve its pricing to be more competitive, especially for large volumes. Also, the KCL library's documentation could be improved to better explain the configuration parameters...
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of us...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML ...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across departments. It's a very big ecosystem, like a finance institute. They are curre...
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
No data available
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
Information Not Available
Find out what your peers are saying about Amazon Kinesis vs. Starburst Enterprise and other solutions. Updated: July 2025.
865,384 professionals have used our research since 2012.