Try our new research platform with insights from 80,000+ expert users

Hugging Face vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of September 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 12.1%, up from 10.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 4.8%, down from 10.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face12.1%
Microsoft Azure Machine Learning Studio4.8%
Other83.1%
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Overall, the platform is excellent."
"I would rate this product nine out of ten."
"I appreciate the versatility and the fact that it has generalized many models."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"The product is reliable."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"It is stable."
"I like that Hugging Face is versatile in the way it has been developed."
"The interface is very intuitive."
"The ability to do the templating and be able to transfer it so that I can easily do multiple types of models and data mining is a valuable aspect of this solution. You only have to set up the flows, the templates, and the data once and then you can make modifications and test different segmentations throughout."
"The most valuable feature of the solution is the availability of ChatGPT in the solution."
"ML Studio is very easy to maintain."
"MLS allows me to set up data experiments by running through various regression and other machine learning algorithms, with different data cleaning and treatment tools. All of this can be achieved via drag and drop, and a few clicks of the mouse."
"The integration with Azure services enhances workflow and meets my expectations."
"The graphical nature of the output makes it very easy to create PowerPoint reports as well."
"Its ability to publish a predictive model as a web based solution and integrate R and python codes are amazing."
 

Cons

"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"It can incorporate AI into its services."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"The initial setup can be rated as a seven out of ten due to occasional issues during model deployment, which might require adjustments."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
"Access to the models and datasets could be improved."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"It would be great if the solution integrated Microsoft Copilot, its AI helper."
"The price could be improved."
"Technical support could improve their turnaround time."
"The pricing policy should be improved."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
"The solution's initial setup process is complicated."
"If you want to be able to deploy your tools outside of Microsoft Azure, this is not the best choice."
 

Pricing and Cost Advice

"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"Hugging Face is an open-source solution."
"We do not have to pay for the product."
"So, it's requires expensive machines to open services or open LLM models."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"The solution is open source."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"The product is not that expensive."
"The licensing cost is very cheap. It's less than $50 a month."
"The product's pricing is reasonable."
"There isn’t any such expensive costs and only a standard license is required."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
867,349 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
11%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
Financial Services Firm
12%
Computer Software Company
9%
Manufacturing Company
9%
University
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise3
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Hugging Face vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: July 2025.
867,349 professionals have used our research since 2012.