Try our new research platform with insights from 80,000+ expert users

Hugging Face vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
14
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of December 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 9.3%, down from 12.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.8%, down from 8.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face9.3%
Microsoft Azure Machine Learning Studio3.8%
Other86.9%
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Director/Enterprise Solutions Architect, Technology Advisor at Kyndryl
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"My preferred aspects are natural language processing and question-answering."
"The tool's most valuable feature is that it's open-source and has hundreds of packages already available. This makes it quite helpful for creating our LLMs."
"It is stable."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"The most valuable features are the inference APIs as it takes me a long time to run inferences on my local machine."
"I would rate this product nine out of ten."
"What I like best about Microsoft Azure Machine Learning Studio is that it's a straightforward tool and it's easy to use. Another valuable feature of the tool is AutoML which lets you get better metrics to train the model right and with good accuracy. The AutoML feature allows you to simply put in your data, and it'll pre-process and create a more accurate model for you. You don't have to do anything because AutoML in Microsoft Azure Machine Learning Studio will take care of it."
"Their web interface is good."
"The solution is integrated with our Microsoft Azure tenant, and we don't have to go anywhere else outside the tenant."
"Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints."
"The solution is very easy to use, so far as our data scientists are concerned."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"The drag-and-drop interface is good."
"I like being able to compare results across different training runs. The hyperparameter tuning function is a valuable feature because it provides the ability to run multiple experiments at the same time and compare results."
 

Cons

"Initially, I faced issues with the solution's configuration."
"Access to the models and datasets could be improved."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"It can incorporate AI into its services."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
"Using the solution requires some specific learning which can take some time."
"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"Microsoft should also include more examples and tutorials for using this product.​"
"​It could use to add some more features in data transformation, time series and the text analytics section."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"Performance is very poor."
"Improvement in integration is crucial, and it'll be interesting to see how it develops, especially with SAP's move towards cloud-based solutions like SAP Rise and its collaboration with hyper scalers like AWS. Integrating SAP with hyperscaler machine learning solutions could simplify operations, although SAP's environment is complex. SAP has initiated deals with AWS for this purpose, but I'm not as familiar with Microsoft Azure Machine Learning Studio's involvement."
"In terms of improvement, I'd like to have more ability to construct and understand the detailed impact of the variables on the model. Their algorithms are very powerful and they explain overall the net contribution of each of the variables to the solution. In terms of being able to say to people "If you did this, you'll get this much more improvement" it wasn't great."
 

Pricing and Cost Advice

"We do not have to pay for the product."
"Hugging Face is an open-source solution."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"The solution is open source."
"So, it's requires expensive machines to open services or open LLM models."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"It is less expensive than one of its competitors."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"There isn’t any such expensive costs and only a standard license is required."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"From a developer's perspective, I find the price of this solution high."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
879,259 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
10%
Computer Software Company
10%
Comms Service Provider
10%
Manufacturing Company
9%
Financial Services Firm
11%
Computer Software Company
9%
Manufacturing Company
9%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise3
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
Everything is pretty much sorted in Hugging Face, but it could be improved if there was an AI chatbot or an AI assistant in Hugging Face platform itself, which can guide you through the whole platf...
What is your primary use case for Hugging Face?
My main use case for Hugging Face is to download open-source models and train on a local machine. We use Hugging Face Transformers for simple and fast integration in our applications and AI-based a...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Hugging Face vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
879,259 professionals have used our research since 2012.