Try our new research platform with insights from 80,000+ expert users

H2O.ai vs Starburst Enterprise comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
Starburst Enterprise
Ranking in Data Science Platforms
12th
Average Rating
8.6
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
Streaming Analytics (16th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of H2O.ai is 1.9%, up from 1.5% compared to the previous year. The mindshare of Starburst Enterprise is 1.7%, down from 2.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Starburst Enterprise1.7%
H2O.ai1.9%
Other96.4%
Data Science Platforms
 

Featured Reviews

MA
Senior Manager - AI at Shamal Holding
Have improved machine learning model automation and reduced decision-making time
One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources. H2O.ai could benefit from enhanced integration with real-time versus offline data sources, as well as improvements in productionalization solutions, including better deployment options on platforms like Azure and CI/CD integration. One of the features I'd like to see included in upcoming releases of H2O.ai pertains to the growing trend of Generative AI, with applications for LLM-based models and vector databases. I would like to see a solution similar to Azure AI Foundry, which provides the flexibility to integrate different LLMs into applications, including H2O-GPT and other models for varied applications.
KamleshPant - PeerSpot reviewer
Senior Software Architect at USEReady
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"It's very scalable, fast performing, and supports many catalogs."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
 

Cons

"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"The model management features could be improved."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"I would like to see more features related to deployment."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"There should be support for REST API data sources to access data from the web."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
879,889 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
14%
Computer Software Company
13%
Manufacturing Company
7%
Educational Organization
7%
Financial Services Firm
40%
Computer Software Company
7%
Government
4%
Manufacturing Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
No data available
 

Questions from the Community

What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of us...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML ...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across departments. It's a very big ecosystem, like a finance institute. They are curre...
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Information Not Available
Find out what your peers are saying about H2O.ai vs. Starburst Enterprise and other solutions. Updated: December 2025.
879,889 professionals have used our research since 2012.