Try our new research platform with insights from 80,000+ expert users

Databricks vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Streaming Analytics (1st)
H2O.ai
Ranking in Data Science Platforms
16th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
 

Mindshare comparison

As of September 2025, in the Data Science Platforms category, the mindshare of Databricks is 14.5%, down from 19.8% compared to the previous year. The mindshare of H2O.ai is 1.8%, up from 1.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Databricks14.5%
H2O.ai1.8%
Other83.7%
Data Science Platforms
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks serves as a single platform that can handle numerous end-to-end machine learning tasks."
"The most valuable feature of Databricks is the notebook, data factory, and ease of use."
"The capacity of use of the different types of coding is valuable. Databricks also has good performance because it is running in spark extra storage, meaning the performance and the capacity use different kinds of codes."
"I like that Databricks is a unified platform that lets you do streaming and batch processing in the same place. You can do analytics, too. They have added something called Databricks SQL Analytics, allowing users to connect to the data lake to perform analytics. Databricks also will enable you to share your data securely. It integrates with your reporting system as well."
"Databricks offers various courses that I can use, whether it's PySpark, Scala, or R."
"The solution's features are fantastic and include interactive clusters that perform at top speed when compared to other solutions."
"The time travel feature is the solution's most valuable aspect."
"Databricks is hosted on the cloud. It is very easy to collaborate with other team members who are working on it. It is production-ready code, and scheduling the jobs is easy."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"The ease of use in connecting to our cluster machines."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
 

Cons

"Pricing is one of the things that could be improved."
"The integration of data could be a bit better."
"The solution could be improved by integrating it with data packets. Right now, the load tables provide a function, like team collaboration. Still, it's unclear as to if there's a function to create different branches and/or more branches. Our team had used data packets before, however, I feel it's difficult to integrate the current with the previous data packets."
"Would be helpful to have additional licensing options."
"There should be better integration with other platforms."
"Databricks is an analytics platform. It should offer more data science. It should have more features for data scientists to work with."
"The query plan is not easy with Databrick's job level. If I want to tune any of the code, it is not easily available in the blogs as well."
"Databricks doesn't offer the use of Python scripts by itself and is not connected to GitHub repositories or anything similar. This is something that is missing. if they could integrate with Git tools it would be an advantage."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"The model management features could be improved."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"I would like to see more features related to deployment."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
 

Pricing and Cost Advice

"The billing of Databricks can be difficult and should improve."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"My smallest project is around a hundred euros, and my most expensive is just under a thousand euros a week. That is based on terabytes of data processed each month."
"We pay as we go, so there isn't a fixed price. It's charged by the unit. I don't have any details detail about how they measure this, but it should be a mix between processing and quantity of data handled. We run a simulation based on our use cases, which gives us an estimate. We've been monitoring this, and the costs have met our expectations."
"We're charged on what the data throughput is and also what the compute time is."
"The pricing depends on the usage itself."
"There are different versions."
"I would rate the tool’s pricing an eight out of ten."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
866,857 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
16%
Computer Software Company
15%
Manufacturing Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Databricks vs. H2O.ai and other solutions. Updated: July 2025.
866,857 professionals have used our research since 2012.