Try our new research platform with insights from 80,000+ expert users

Databricks vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (8th), Streaming Analytics (1st)
H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
9
Ranking in other categories
Model Monitoring (5th)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Databricks is 15.9%, down from 19.8% compared to the previous year. The mindshare of H2O.ai is 1.8%, up from 1.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is easy to use and has a quick start-up time due to being on the cloud."
"Databricks integrates well with other solutions."
"The tool helps with data processing and analytics with large-scale data or big data since it is associated with managing data at a large scale."
"Databricks is a unified solution that we can use for streaming. It is supporting open source languages, which are cloud-agnostic. When I do database coding if any other tool has a similar language pack to Excel or SQL, I can use the same knowledge, limiting the need to learn new things. It supports a lot of Python libraries where I can use some very easily."
"The ease of use and its accessibility are valuable."
"The notebooks and the ability to share them with collaborators are valuable, as multiple developers can use a single cluster."
"Ability to work collaboratively without having to worry about the infrastructure."
"Databricks' most valuable features are the workspace and notebooks. Its integration, interface, and documentation are also good."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The ease of use in connecting to our cluster machines."
 

Cons

"I would like to see more documentation in terms of how an end-user could use it, and users like me can easily try it and implement use cases."
"The solution could be improved by integrating it with data packets. Right now, the load tables provide a function, like team collaboration. Still, it's unclear as to if there's a function to create different branches and/or more branches. Our team had used data packets before, however, I feel it's difficult to integrate the current with the previous data packets."
"There are no direct connectors — they are very limited."
"The integration features could be more interesting, more involved."
"Databricks could improve in some of its functionality."
"The connectivity with various BI tools could be improved, specifically the performance and real time integration."
"Performance could be improved."
"It should have more compatible and more advanced visualization and machine learning libraries."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"I would like to see more features related to deployment."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"The model management features could be improved."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
 

Pricing and Cost Advice

"My smallest project is around a hundred euros, and my most expensive is just under a thousand euros a week. That is based on terabytes of data processed each month."
"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"I would rate the tool’s pricing an eight out of ten."
"The cost is around $600,000 for 50 users."
"I would rate Databricks' pricing seven out of ten."
"Price-wise, I would rate Databricks a three out of five."
"Databricks is a very expensive solution. Pricing is an area that could definitely be improved. They could provide a lower end compute and probably reduce the price."
"Whenever we want to find the actual costing, we have to send an email to Databricks, so having the information available on the internet would be helpful."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
863,429 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
16%
Computer Software Company
15%
Manufacturing Company
9%
Educational Organization
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Databricks vs. H2O.ai and other solutions. Updated: July 2025.
863,429 professionals have used our research since 2012.