Try our new research platform with insights from 80,000+ expert users

H2O.ai vs KNIME Business Hub comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jul 27, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
16th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
KNIME Business Hub
Ranking in Data Science Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of September 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.8%, up from 1.4% compared to the previous year. The mindshare of KNIME Business Hub is 12.3%, up from 10.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
KNIME Business Hub12.3%
H2O.ai1.8%
Other85.9%
Data Science Platforms
 

Featured Reviews

Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.
Laurence Moseley - PeerSpot reviewer
Has a drag-and-drop interface and AI capabilities
It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data. Next, you can clean the data by handling missing values, selecting specific columns you want to analyze, and then proceeding with your analysis, such as regression or correlation. KNIME has over 4,500 nodes available for download. In addition, KNIME offers various extensions. For instance, the text processing extension allows you to process text data efficiently. It's more powerful than other tools like NVivo and Palantir. KNIME also has AI capabilities. If you're unsure about the next step, the AI assistant can suggest the most frequently used nodes based on your previous work. Another valuable feature is the integration with Python. If you need to perform a task that requires Python, you can simply add a Python node, write the necessary code,

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"The ease of use in connecting to our cluster machines."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"From a user-friendliness perspective, it's a great tool."
"I've tried to utilize KNIME to the fullest extent possible to replace Excel."
"It can handle an unlimited amount of data, which is the advantage of using Knime."
"The product is open-source and therefore free to use."
"It offers a node-based data integration and processing system connected through a user-friendly drag-and-drop interface. This makes it an excellent choice for data analytics and engineering tasks."
"It is a stable solution...It is a scalable solution."
"It has allowed us to easily implement advanced analytics into various processes."
"There are a lot of connectors available in KNIME."
 

Cons

"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"I would like to see more features related to deployment."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"I would prefer to have more connectivity."
"KNIME doesn't handle large datasets or a high number of records well."
"If they had a more structured training model it would be very helpful."
"When deploying models on a regular system, it works fine. However, when accuracy is a priority, hyperparameter tuning is necessary. Currently, KNIME doesn't have the best tools for this which they could improve in this area."
"KNIME is not scalable."
"Sometimes, we needed more space to handle larger operations, especially since our machines had limited space and memory due to Kubernetes clusters."
"I'd like something that would make it easier to connect/parse websites, although I will fully admit that I'm not as proficient in KNIME as I would like to be, so it could be I'm just missing something."
"System resource usage. Knime will occupy total system RAM size and other applications will hang."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"It is free of cost. It is GNU licensed."
"The price for Knime is okay."
"We're using the free academic license just locally. I went for KNIME because they have a free academic license."
"KNIME Business Hub is expensive for small companies."
"It's an open-source solution."
"I use the open-source version."
"This is a free open-source solution."
"KNIME is an open-source tool, so it's free to use."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
867,021 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
16%
Computer Software Company
15%
Manufacturing Company
9%
Educational Organization
6%
Financial Services Firm
11%
Manufacturing Company
10%
University
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
By reviewers
Company SizeCount
Small Business20
Midsize Enterprise16
Large Enterprise29
 

Questions from the Community

What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Also Known As

No data available
KNIME Analytics Platform
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about H2O.ai vs. KNIME Business Hub and other solutions. Updated: July 2025.
867,021 professionals have used our research since 2012.