Try our new research platform with insights from 80,000+ expert users

Domino Data Science Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Domino Data Science Platform
Ranking in Data Science Platforms
14th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (4th)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Domino Data Science Platform is 2.7%, down from 2.8% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.1%, down from 7.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The scalability of the solution is good; I'd rate it four out of five."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
"The product supports open-source tools."
"The solution facilitates our production."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"I find Microsoft Azure Machine Learning Studio advantageous because it allows integration with Titan Scratch and offers an easy-to-use drag-and-drop menu for developing machine learning models."
"Their support is helpful."
"Azure Machine Learning Studio's most valuable features are the package from Azure AutoML. It is quite powerful compared to the building of ML in Databricks or other AutoMLs from other companies, such as Google and Amazon."
"The UI is very user-friendly and that AI is easy to use."
"ML Studio is very easy to maintain."
 

Cons

"The deployment of large language models (LLMs) could be improved."
"The predictive analysis feature needs improvement."
"Operability with R could be improved."
"Microsoft Azure Machine Learning Studio worked okay for me, so right now, I don't have any room for improvement in mind for it. What I'd like added to Microsoft Azure Machine Learning Studio in its next version is a categorization for use cases or a template that makes the use cases simple to map out, for example, for healthcare, medical, or finance use cases, etc. This would be very helpful for users of Microsoft Azure Machine Learning Studio, especially for beginners."
"The speed of deployment should be faster, as should testing."
"The product must improve its documentation."
"The solution must increase the amount of data sources that can be integrated."
"The AutoML feature is very basic and they should improve it by using a more robust algorithm."
"This solution could be improved if they could integrate the data pipeline scheduling part for their interface."
"The solution's initial setup process is complicated."
 

Pricing and Cost Advice

Information not available
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"There isn’t any such expensive costs and only a standard license is required."
"The solution operates on a pay-per-use model."
"The product's pricing is reasonable."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
863,901 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
38%
Manufacturing Company
10%
Insurance Company
8%
Computer Software Company
6%
Financial Services Firm
12%
Manufacturing Company
9%
Computer Software Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

Domino Data Lab Platform
Azure Machine Learning, MS Azure Machine Learning Studio
 

Interactive Demo

Demo not available
 

Overview

 

Sample Customers

Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Domino Data Science Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: July 2025.
863,901 professionals have used our research since 2012.