

Snowflake and Microsoft Azure Synapse Analytics compete in the cloud-based data warehousing category. Snowflake seems to have the upper hand in scalability and flexibility, while Azure Synapse offers robust analytical features.
Features: Snowflake is recognized for its scalability and flexibility, effectively handling structured and semi-structured data. It utilizes massively parallel processing and provides auto-scaling capabilities. The separation of storage and compute resources enhances its operation. Azure Synapse excels in real-time analytics and offers advanced data integration capabilities with other Microsoft services, along with native support for various analytical functions.
Room for Improvement: Snowflake could enhance its geospatial capabilities and improve its user interface. Users also suggest better pricing transparency and expanding its machine learning features. Azure Synapse needs improved documentation, better integration with third-party tools, and enhancements in real-time querying performance. Users also report a need for more sophisticated governance features.
Ease of Deployment and Customer Service: Snowflake facilitates deployment via public cloud options and supports private cloud environments. It has positive customer service feedback, though some users desire faster response times. Azure Synapse offers hybrid deployment options but receives mixed customer support reviews, with some reporting slow response times. Both solutions could benefit from improved technical guidance and setup documentation.
Pricing and ROI: Snowflake's flexible credit-based pricing can lead to unexpected costs if not properly managed. Although cost-effective, its value depends on usage patterns. Azure Synapse's pricing is perceived as high but offers additional value through integration with Microsoft services. Both platforms provide good value for their features, though predicting costs upfront remains challenging.
Some of my customers have indeed seen a return on investment with Microsoft Azure Synapse Analytics as they used it for analytics to drive decision-making, improving their processes or increasing revenue.
They are slow to respond and not very knowledgeable.
This is an underestimation of the real impact because we use big data also to monitor the network and the customer.
I would rate the support for Microsoft Azure Synapse Analytics as an eight out of ten.
We sought this documentation multiple times but faced difficulty in obtaining it.
I received great support in migrating data to Snowflake, with quick responses and innovative solutions.
I am satisfied with the work of technical support from Snowflake; they are responsive and helpful.
Microsoft Azure Synapse Analytics is scalable, offering numerous opportunities for scalability.
For the scalability of Microsoft Azure Synapse Analytics, I would rate it a 10 until you remain in the Azure Cloud scalability framework.
Recovering from such scenarios becomes a bit problematic or time-consuming.
Snowflake is very scalable and has a dedicated team constantly improving the product.
The billing doubles with size increase, but processing does not necessarily speed up accordingly.
Recently, Snowflake has introduced streaming capabilities, real-time and dynamic tables, along with various connectors.
Performance and stability are absolutely fine because Microsoft Azure Synapse Analytics is a PaaS service.
I find the service stable as I have not encountered many issues.
We have never integrated Microsoft Azure Synapse Analytics with Databricks, but we have mostly pulled data from on-premises systems into Azure Databricks.
Snowflake is highly stable and performs well even with large data sets exceeding terabytes, maintaining stability throughout.
Snowflake is very stable, especially when used with AWS.
Snowflake as a SaaS offering means that maintenance isn't an issue for me.
Microsoft Azure Synapse Analytics is an excellent product because it includes both SIEM and orchestration capabilities with playbooks.
There is a need for better documentation, particularly for customized tasks with Microsoft Azure Synapse Analytics.
Databricks is a very rich solution, with numerous open sources and capabilities in terms of extract, transform, load, database query, and so forth.
Enhancements in user experience for data observability and quality checks would be beneficial, as these tasks currently require SQL coding, which might be challenging for some users.
What things you are going with to ask the support and how we manage the relationship matters a lot.
If more connectors were brought in and more visibility features were added, particularly around cost tracking in the FinOps area, it would be beneficial.
The cheapest tier costs about $4,000 to $4,700 a year, while the most expensive tier can reach up to $300,000 a year.
I think the price of Microsoft Azure Synapse Analytics is very expensive, but that's not only for Microsoft Azure Synapse Analytics—it's for the cloud in general.
I find the pricing of Microsoft Azure Synapse Analytics reasonable.
When it comes to cloud support, the setup cost is very cheap compared to other platforms, such as Oracle or PostgreSQL, which typically require higher costs.
Snowflake's pricing is on the higher side.
Snowflake lacks transparency in estimating resource usage.
One of the most valuable features in Microsoft Azure Synapse Analytics is the ability to write your own ETL code using Azure Data Factory, which is a component within Synapse.
Microsoft Azure Synapse Analytics offers significant visibility, which helps us understand our usage more clearly.
For Microsoft Azure Synapse Analytics, the integration is the most valuable feature, meaning that whatever you need is fast and easy to use.
We had a comparison with Databricks and Snowflake a few months back, and this auto-scaling takes an edge within Snowflake; that's what our observation reflects.
I have used the Snowflake Zero-Copy Cloning feature in the past while prototyping data in lower environments. This feature is helpful as it saves a lot of time during the data replication process.
Snowflake has contributed to significant cost savings.
| Product | Market Share (%) |
|---|---|
| Snowflake | 15.9% |
| Microsoft Azure Synapse Analytics | 6.1% |
| Other | 78.0% |


| Company Size | Count |
|---|---|
| Small Business | 29 |
| Midsize Enterprise | 18 |
| Large Enterprise | 56 |
| Company Size | Count |
|---|---|
| Small Business | 29 |
| Midsize Enterprise | 20 |
| Large Enterprise | 58 |
Microsoft Azure Synapse Analytics is an end-to-end analytics solution that successfully combines analytical services to merge big data analytics and enterprise data warehouses into a single unified platform. The solution can run intelligent distributed queries among nodes, and provides the ability to query both relational and non-relational data.
Microsoft Azure Synapse Analytics is built with these 4 components:
Microsoft Azure Synapse Analytics Features
Microsoft Azure Synapse Analytics has many valuable key features, including:
Microsoft Azure Synapse Analytics Benefits
Some of the benefits of using Microsoft Azure Synapse Analytics include:
Reviews from Real Users
Below are some reviews and helpful feedback written by Microsoft Azure Synapse Analytics users who are currently using the solution.
PeerSpot user Jael S., who is an Information Architect at Systems Analysis & Design Engineering, comments on her experience using the product, saying that it is “Scalable, intuitive, facilitates compliance and keeps your data secure”. She also says "We also like governance. It looks at what the requirements are for the company to identify the best way to ensure compliance is met when you move to the cloud."
Michel T., CHTO at Timp-iT, mentions that "the features most valuable are the simplicity, how easy it is to create a dashboard from different information systems."
A Senior Teradata Consultant at a tech services company says, "Microsoft provides both the platform and the data center, so you don't have to look for a cloud vendor. It saves you from having to deal with two vendors for the same task."
Snowflake provides a modern data warehousing solution with features designed for seamless integration, scalability, and consumption-based pricing. It handles large datasets efficiently, making it a market leader for businesses migrating to the cloud.
Snowflake offers a flexible architecture that separates storage and compute resources, supporting efficient ETL jobs. Known for scalability and ease of use, it features built-in time zone conversion and robust data sharing capabilities. Its enhanced security, performance, and ability to handle semi-structured data are notable. Users suggest improvements in UI, pricing, on-premises integration, and data science functions, while calling for better transaction performance and machine learning capabilities. Users benefit from effective SQL querying, real-time analytics, and sharing options, supporting comprehensive data analysis with tools like Tableau and Power BI.
What are Snowflake's Key Features?
What Benefits Should You Look for?
In industries like finance, healthcare, and retail, Snowflake's flexible data warehousing and analytics capabilities facilitate cloud migration, streamline data storage, and allow organizations to consolidate data from multiple sources for advanced insights and AI-driven strategies. Its integration with analytics tools supports comprehensive data analysis and reporting tasks.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.