Try our new research platform with insights from 80,000+ expert users

Google Cloud Dataflow vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Dataflow
Ranking in Streaming Analytics
9th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
14
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (21st)
 

Mindshare comparison

As of December 2025, in the Streaming Analytics category, the mindshare of Google Cloud Dataflow is 4.6%, down from 7.8% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.5%, down from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Google Cloud Dataflow4.6%
Spring Cloud Data Flow4.5%
Other90.9%
Streaming Analytics
 

Featured Reviews

Jana Polianskaja - PeerSpot reviewer
Data Engineer at Accenture
Build Scalable Data Pipelines with Apache Beam and Google Cloud Dataflow
As a data engineer, I find several features of Google Cloud Dataflow particularly valuable. The ability to test solutions locally using Direct Runner is crucial for development, allowing me to validate pipelines without incurring the costs of full Dataflow jobs. The unified programming model for both batch and streaming processing is exceptional - requiring only minor code adjustments to optimize for either mode. This flexibility extends to language support, with robust implementations in both Java and Python, allowing teams to leverage their existing expertise. The platform's comprehensive monitoring capabilities are another standout feature. The intuitive interface, Grafana integration, and extensive service connectivity make troubleshooting and performance tracking highly efficient. Furthermore, seamless integration with Google Cloud Composer (managed Airflow) enables sophisticated orchestration of data pipelines.
LN
Senior Software Engineer at QBE Regional Insurance
Provides ease of integration with other cloud platforms
Spring Cloud Data Flow is a useful product if I consider how there are different providers with whom my company had to deal, and most of them offer cloud-based products. I can't explain any crucial circumstances where the product's integration capabilities were helpful, but the aforementioned details explain the scenario for which I used the solution. I was only involved with the development of the product and not with the data pipeline configuration phase. The use of Spring Cloud Data Flow greatly impacted projects' time to market since our company's intention was to actually deploy and ensure that the payment platform integrated with it, which was an easy process. The product's user interface was very intuitive. The tool was deployed in multiple environments, but I am not sure about the production. From the time I started taking up the job in my current organization, I saw that we have deployed the tool in multiple environments wherein the number of users extensively used the product in the UAT environment, which is one of the most stable environments. There were 20 different methods to test the tool. I wouldn't be able to tell you the production details of the tool as I was more part of the production deployment, but I can say that it was deployed with the intent of making it available for 10,000 users. Those who plan to use the product should enjoy the flexibility of the solution. I rate the tool a nine out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I would rate the overall solution a ten out of ten."
"The best feature of Google Cloud Dataflow is its practical connectedness."
"The solution allows us to program in any language we desire."
"It allows me to test solutions locally using runners like Direct Runner without having to start a Dataflow job, which can be costly."
"The product's installation process is easy...The tool's maintenance part is somewhat easy."
"The most valuable features of Google Cloud Dataflow are scalability and connectivity."
"Google's support team is good at resolving issues, especially with large data."
"Google Cloud Dataflow is useful for streaming and data pipelines."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The most valuable feature is real-time streaming."
"The product is very user-friendly."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The dashboards in Spring Cloud Dataflow are quite valuable."
 

Cons

"They should do a market survey and then make improvements."
"There are certain challenges regarding the Google Cloud Composer which can be improved."
"The authentication part of the product is an area of concern where improvements are required."
"Google Cloud Data Flow can improve by having full simple integration with Kafka topics. It's not that complicated, but it could improve a bit. The UI is easy to use but the experience could be better. There are other tools available that do a better job."
"Google Cloud Dataflow should include a little cost optimization."
"When I deploy the product in local errors, a lot of errors pop up which are not always caught. The solution's error logging is bad. It can take a lot of time to debug the errors. It needs to have better logs."
"The system could function in an automated fashion and provide suggestions based on past transactions to achieve better scalability."
"I would like to see improvements in consistency and flexibility for schema design for NoSQL data stored in wide columns."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"I would improve the dashboard features as they are not very user-friendly."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The solution's community support could be improved."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
 

Pricing and Cost Advice

"The price of the solution depends on many factors, such as how they pay for tools in the company and its size."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a seven to eight out of ten."
"Google Cloud Dataflow is a cheap solution."
"The solution is cost-effective."
"The tool is cheap."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate Google Cloud Dataflow's pricing a four out of ten."
"Google Cloud is slightly cheaper than AWS."
"The solution is not very expensive."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
879,259 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Manufacturing Company
12%
Retailer
11%
Healthcare Company
8%
Financial Services Firm
22%
Computer Software Company
13%
Retailer
8%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise2
Large Enterprise10
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

What do you like most about Google Cloud Dataflow?
The product's installation process is easy...The tool's maintenance part is somewhat easy.
What is your experience regarding pricing and costs for Google Cloud Dataflow?
Pricing is normal. It is part of a package received from Google, and they are not charging us too high.
What needs improvement with Google Cloud Dataflow?
It can be improved in several ways. The system could function in an automated fashion and provide suggestions based on past transactions to achieve better scalability. Implementing AI-based suggest...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

Google Dataflow
No data available
 

Overview

 

Sample Customers

Absolutdata, Backflip Studios, Bluecore, Claritics, Crystalloids, Energyworx, GenieConnect, Leanplum, Nomanini, Redbus, Streak, TabTale
Information Not Available
Find out what your peers are saying about Google Cloud Dataflow vs. Spring Cloud Data Flow and other solutions. Updated: December 2025.
879,259 professionals have used our research since 2012.