Try our new research platform with insights from 80,000+ expert users

Databricks vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
93
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st), Data Management Platforms (DMP) (5th)
Spring Cloud Data Flow
Ranking in Streaming Analytics
11th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (20th)
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Databricks is 9.5%, down from 14.1% compared to the previous year. The mindshare of Spring Cloud Data Flow is 3.8%, down from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks9.5%
Spring Cloud Data Flow3.8%
Other86.7%
Streaming Analytics
 

Featured Reviews

Satyam Wagh - PeerSpot reviewer
Consultant at Nice Software Solutions
Unified data workflows have cut ticket processing times and are driving faster business insights
Databricks already provides monthly updates and continuously works on delivering new features while enhancing existing ones. However, the platform could become easier to use. While instruction-led workshops are available, offering more free instructional workshops would allow a wider audience to access and learn about Databricks. Additionally, providing use cases would help beginners gain more knowledge and hands-on experience. Regarding my experience, I was initially unfamiliar with the platform and had to conduct research and learn through various videos. I did find some instruction-led classes, but several of those required payment. The platform should provide more free resources to enable a broader audience to access and learn about Databricks. The platform itself is user-friendly and easy to use without complex issues, so I believe it does not need improvement in its core functionality. Rather, supporting aspects can be enhanced.
LN
Senior Software Engineer at QBE Regional Insurance
Provides ease of integration with other cloud platforms
Spring Cloud Data Flow is a useful product if I consider how there are different providers with whom my company had to deal, and most of them offer cloud-based products. I can't explain any crucial circumstances where the product's integration capabilities were helpful, but the aforementioned details explain the scenario for which I used the solution. I was only involved with the development of the product and not with the data pipeline configuration phase. The use of Spring Cloud Data Flow greatly impacted projects' time to market since our company's intention was to actually deploy and ensure that the payment platform integrated with it, which was an easy process. The product's user interface was very intuitive. The tool was deployed in multiple environments, but I am not sure about the production. From the time I started taking up the job in my current organization, I saw that we have deployed the tool in multiple environments wherein the number of users extensively used the product in the UAT environment, which is one of the most stable environments. There were 20 different methods to test the tool. I wouldn't be able to tell you the production details of the tool as I was more part of the production deployment, but I can say that it was deployed with the intent of making it available for 10,000 users. Those who plan to use the product should enjoy the flexibility of the solution. I rate the tool a nine out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks is a unified solution that we can use for streaming. It is supporting open source languages, which are cloud-agnostic. When I do database coding if any other tool has a similar language pack to Excel or SQL, I can use the same knowledge, limiting the need to learn new things. It supports a lot of Python libraries where I can use some very easily."
"Databricks' capability to process data in parallel enhances data processing speed."
"The setup was straightforward."
"Databricks makes it really easy to use a number of technologies to do data analysis. In terms of languages, we can use Scala, Python, and SQL. Databricks enables you to run very large queries, at a massive scale, within really good timeframes."
"The ability to stream data and the windowing feature are valuable."
"Databricks has helped us have a good presence in data."
"The notebooks and the ability to share them with collaborators are valuable, as multiple developers can use a single cluster."
"The solution is built from Spark and has integration with MLflow, which is important for our use case."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The product is very user-friendly."
"The most valuable feature is real-time streaming."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
 

Cons

"There could be more support for automated machine learning in the database. I would like to see more ways to do analysis so that the reporting is more understandable."
"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"The product cannot be integrated with a popular coding IDE."
"Scalability is an area with certain shortcomings. The solution's scalability needs improvement."
"I would like it if Databricks adopted an interface more like R Studio. When I create a data frame or a table, R Studio provides a preview of the data. In R Studio, I can see that it created a table with so many columns or rows. Then I can click on it and open a preview of that data."
"The product should provide more advanced features in future releases."
"We'd like a more visual dashboard for analysis It needs better UI."
"Databricks' technical support takes a while to respond and could be improved."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"I would improve the dashboard features as they are not very user-friendly."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
 

Pricing and Cost Advice

"The pricing depends on the usage itself."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"I rate the price of Databricks as eight out of ten."
"We're charged on what the data throughput is and also what the compute time is."
"Price-wise, I would rate Databricks a three out of five."
"The cost is around $600,000 for 50 users."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
882,103 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
8%
Healthcare Company
6%
Financial Services Firm
21%
Computer Software Company
12%
Retailer
8%
Healthcare Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business26
Midsize Enterprise12
Large Enterprise56
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Spring Cloud Data Flow and other solutions. Updated: December 2025.
882,103 professionals have used our research since 2012.