Try our new research platform with insights from 80,000+ expert users

AWS Batch vs Apache Spark comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on May 21, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Compute Service
4th
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
67
Ranking in other categories
Hadoop (2nd), Java Frameworks (2nd)
AWS Batch
Ranking in Compute Service
3rd
Average Rating
8.4
Reviews Sentiment
7.0
Number of Reviews
10
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Compute Service category, the mindshare of Apache Spark is 11.6%, up from 11.5% compared to the previous year. The mindshare of AWS Batch is 17.2%, up from 16.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Compute Service Market Share Distribution
ProductMarket Share (%)
AWS Batch17.2%
Apache Spark11.6%
Other71.2%
Compute Service
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
Larry Singh - PeerSpot reviewer
User-friendly, good customization and offers exceptional scalability, allowing users to run jobs ranging from 32 cores to over 2,000 cores
The main drawback to using AWS Batch would be the cost. It will be more expensive in some cases than using an HPC. It's more amenable to cases where you have spot requirements. So, for instance, you don't exactly know how much compute resources you'll need and when you'll need them. So it's much better for that flexibility. But if you're going to be running jobs consistently and using the compute cluster consistently for a lot of time, and it's not going to have a lot of downtime, then the HPC system might be a better alternative. So, really, it boils down to cost versus usage trade-offs. It's going to be more expensive for a lot of people. In future releases, I would like to see anything that could help make it easier to set up your initial system. And besides improving the GUI a little bit, the interface to it, making it a little bit more descriptive and having more information at your fingertips, so if you could point to the help of what the different features are, you can get quick access to that. That might help. With most of the AWS services, the difficulty really is getting information and knowledge about the system and seeing examples. So, seeing examples of how it's being used under multiple use cases would be the best way to become familiar with it. And some of that would just come with experience. You have to just use it and play with it. But in terms of the system itself, it's not that difficult to set up or use.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most significant advantage of Spark 3.0 is its support for DataFrame UDF Pandas UDF features."
"The features we find most valuable are the machine learning, data learning, and Spark Analytics."
"The good performance. The nice graphical management console. The long list of ML algorithms."
"One of Apache Spark's most valuable features is that it supports in-memory processing, the execution of jobs compared to traditional tools is very fast."
"Spark can handle small to huge data and is suitable for any size of company."
"The processing time is very much improved over the data warehouse solution that we were using."
"AI libraries are the most valuable. They provide extensibility and usability. Spark has a lot of connectors, which is a very important and useful feature for AI. You need to connect a lot of points for AI, and you have to get data from those systems. Connectors are very wide in Spark. With a Spark cluster, you can get fast results, especially for AI."
"The scalability has been the most valuable aspect of the solution."
"We can easily integrate AWS container images into the product."
"AWS Batch's deployment was easy."
"AWS Batch manages the execution of computing workload, including job scheduling, provisioning, and scaling."
"There is one other feature in confirmation or call confirmation where you can have templates of what you want to do and just modify those to customize it to your needs. And these templates basically make it a lot easier for you to get started."
 

Cons

"There were some problems related to the product's compatibility with a few Python libraries."
"When using Spark, users may need to write their own parallelization logic, which requires additional effort and expertise."
"The product could improve the user interface and make it easier for new users."
"Apache Spark could potentially improve in terms of user-friendliness, particularly for individuals with a SQL background. While it's suitable for those with programming knowledge, making it more accessible to those without extensive programming skills could be beneficial."
"The migration of data between different versions could be improved."
"Apache Spark provides very good performance The tuning phase is still tricky."
"Apache Spark could improve the connectors that it supports. There are a lot of open-source databases in the market. For example, cloud databases, such as Redshift, Snowflake, and Synapse. Apache Spark should have connectors present to connect to these databases. There are a lot of workarounds required to connect to those databases, but it should have inbuilt connectors."
"At times during the deployment process, the tool goes down, making it look less robust. To take care of the issues in the deployment process, users need to do manual interventions occasionally."
"The main drawback to using AWS Batch would be the cost. It will be more expensive in some cases than using an HPC. It's more amenable to cases where you have spot requirements."
"When we run a lot of batch jobs, the UI must show the history."
"The solution should include better and seamless integration with other AWS services, like Amazon S3 data storage and EC2 compute resources."
"AWS Batch needs to improve its documentation."
 

Pricing and Cost Advice

"They provide an open-source license for the on-premise version."
"The solution is affordable and there are no additional licensing costs."
"Apache Spark is an expensive solution."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"It is an open-source platform. We do not pay for its subscription."
"The pricing is very fair."
"AWS Batch's pricing is good."
"AWS Batch is a cheap solution."
report
Use our free recommendation engine to learn which Compute Service solutions are best for your needs.
872,706 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
11%
Comms Service Provider
7%
Manufacturing Company
7%
Financial Services Firm
29%
Manufacturing Company
8%
Computer Software Company
8%
University
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business27
Midsize Enterprise15
Large Enterprise32
By reviewers
Company SizeCount
Small Business5
Large Enterprise6
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Regarding Apache Spark, I have only used Apache Spark Structured Streaming, not the machine learning components. I am uncertain about specific improvements needed today. However, after five years, ...
Which is better, AWS Lambda or Batch?
AWS Lambda is a serverless solution. It doesn’t require any infrastructure, which allows for cost savings. There is no setup process to deal with, as the entire solution is in the cloud. If you use...
What do you like most about AWS Batch?
AWS Batch manages the execution of computing workload, including job scheduling, provisioning, and scaling.
What is your experience regarding pricing and costs for AWS Batch?
Pricing is good, as AWS Batch allows specifying spot instances, providing cost-effective solutions when launching jobs and spinning up EC2 instances.
 

Comparisons

 

Also Known As

No data available
Amazon Batch
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Hess, Expedia, Kelloggs, Philips, HyperTrack
Find out what your peers are saying about AWS Batch vs. Apache Spark and other solutions. Updated: September 2025.
872,706 professionals have used our research since 2012.