Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Qlik Talend Cloud comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Nov 18, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
7th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Qlik Talend Cloud
Ranking in Streaming Analytics
11th
Average Rating
8.2
Reviews Sentiment
6.5
Number of Reviews
53
Ranking in other categories
Data Integration (9th), Data Quality (3rd), Data Scrubbing Software (1st), Master Data Management (MDM) Software (3rd), Cloud Data Integration (7th), Data Governance (8th), Cloud Master Data Management (MDM) (4th), Integration Platform as a Service (iPaaS) (9th)
 

Mindshare comparison

As of December 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 4.0%, up from 3.3% compared to the previous year. The mindshare of Qlik Talend Cloud is 1.5%, up from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Spark Streaming4.0%
Qlik Talend Cloud1.5%
Other94.5%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Sr Project Manager at Raj Subhatech
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
HJ
IT Consultant at a tech services company with 201-500 employees
Has automated recurring data flows and improved accuracy in reporting
The best features of Talend Data Integration are its rich set of components that let you connect to almost any data design intuitive and its strong automation and scheduling capabilities. The TMap component is especially valuable because it allows flexible transformation, joins, and filtering in a single place. I also rely a lot on context variables to manage different environments like Dev, Test, and production, without changing the code. The error handling and logging tools are very helpful for monitoring and troubleshooting, which makes the workflow more reliable. Talend Data Integration has helped our company by automating and standardizing data processes. Before, many of these tasks were done manually, which took more time and often led to errors. With Talend Data Integration, we built automated pipelines that extract, clean, and load data consistently. This not only saves hours of manual effort, but also improves the accuracy and reliability of data. As a result, business teams had faster access to trustworthy information for reporting and decision making, which directly improved efficiency and productivity. Talend Data Integration has had a measurable impact on our organization. By automating daily data loading processes, we reduced manual effort by around three or four hours per day, which saved roughly 60 to 80 hours per month. We also improved data accuracy. Error rates dropped by more than 70% because validation rules were built into the jobs. In addition, reporting teams now receive fresh data at least 50% faster, which means they can make decisions earlier and with more confidence. Overall, Talend Data Integration has increased both efficiency and reliability in our data workflows.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"As an open-source solution, using it is basically free."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"Apache Spark's capabilities for machine learning are quite extensive and can be used in a low-code way."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"Talend Data integration has a wide library of connectors."
"The numerous components provided by Talend mean you’re able to create jobs quickly and efficiently."
"It is saving a lot of time. Today, we can mask around a hundred million records in 10 minutes. Masking is one of the key pieces that is used heavily by the business and IT folks. Normally in the software development life cycle, before you project anything into the production environment, you have to test it in the test environment to make sure that when the data goes into production, it works, but these are all production files. For example, we acquired a new company or a new state for which we're going to do the entire back office, which is related to claims processing, payments, and member enrollment every year. If you get the production data and process it again, it becomes a compliance issue. Therefore, for any migrations that are happening, we have developed a new capability called pattern masking. This feature looks at those files, masks that information, and processes it through the system. With this, there is no PHI and PII element, and there is data integrity across different systems. It has seamless integration with different databases. It has components using which you can easily integrate with different databases on the cloud or on-premise. It is a drag and drop kind of tool. Instead of writing a lot of Java code or SQL queries, you can just drag and drop things. It is all very pictorial. It easily tells you where the job is failing. So, you can just go quickly and figure out why it is happening and then fix it."
"The product's integration with PostgreSQL and Jira has been helpful for us. Its performance is good. However, we do not use it for large data sets."
"The solution enables robust data matching, merging, survivorship, and Data Stewardship that can be a part of data quality workflows or true master data management."
"The solution is customizable."
"The solution is very user-friendly and easy to understand."
"The file fetch process is impeccable."
 

Cons

"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"The solution itself could be easier to use."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"The initial setup is quite complex."
"Integrating event-level streaming capabilities could be beneficial."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
"When we upgraded to Version 6.4.1, we tried using a GIT repository instead of a SVN repository. After a few incidents where things disappeared and changes were not saved, we decided to go back to a SVN repository."
"In terms of the solution's technical support, the interactions were satisfactory, but there is room for improvement, especially in managing expectations."
"It would be more helpful if it offered dynamic dashboards that could be directly used by clients for better analysis."
"If I am designing something in Talend Data Integration, I cannot backtrack in the flow. For example, if I read data from a source and transform it before applying complex aggregation in the third step, I cannot join this data with the second step."
"I wonder if, at the same price, the API component could be added, which would be beneficial."
"Once you get past the basic tools, it gets pretty complicated."
"Processing large volumes of data sometimes consumes a lot of resources."
"Performance and speed could be improved."
 

Pricing and Cost Advice

"People pay for Apache Spark Streaming as a service."
"Spark is an affordable solution, especially considering its open-source nature."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"I was using the open-source community version, which was self-hosted."
"The licensing cost is about 40,000 Euros a year."
"The pricing is a little higher than what I had expected, but it's comparable with I-PASS competitors."
"It's a subscription-based platform, we renew it every year."
"It is cheaper than Informatica. Talend Data Quality costs somewhere between $10,000 to $12,000 per year for a seat license. It would cost around $20,000 per year for a concurrent license. It is the same for the whole big data solution, which comes with Talend DI, Talend DQ, and TDM."
"The tool is cheap."
"I would advise to first take a look and at the Open Studio edition. Figure out what you need and purchase the appropriate license."
"I have been using the open-source version."
"The solution's pricing is very reasonable and half the cost of Informatica."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
879,259 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
23%
Financial Services Firm
20%
Healthcare Company
6%
University
5%
Financial Services Firm
13%
Computer Software Company
11%
Comms Service Provider
7%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business20
Midsize Enterprise11
Large Enterprise18
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
What do you like most about Talend Data Quality?
The most valuable feature lies in the capability to assign data quality issues to different stakeholders, facilitating the tracking and resolution of defective work.
What needs improvement with Talend Data Quality?
I don't use the automated rule management feature in Talend Data Quality that much, so I cannot provide much feedback. I may not know what Talend Data Quality can improve for data quality. I'm not ...
What is your primary use case for Talend Data Quality?
It is for consistency, mainly; data consistency and data quality are our main use cases for the product. Data consistency is the primary purpose we use it for, as we have written rules in Talend Da...
 

Also Known As

Spark Streaming
Talend Data Quality, Talend Data Management Platform, Talend MDM Platform, Talend Data Streams, Talend Data Integration, Talend Data Integrity and Data Governance
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Aliaxis, Electrocomponents, M¾NCHENER VEREIN, The Sunset Group
Find out what your peers are saying about Apache Spark Streaming vs. Qlik Talend Cloud and other solutions. Updated: December 2025.
879,259 professionals have used our research since 2012.