

CockroachDB and ClickHouse are prominent solutions in the database management systems category, particularly competing in distributed and cloud-native solutions. CockroachDB holds an upper hand in terms of security and geo-distribution features, while ClickHouse leads with its speed and efficiency in handling large-scale data queries.
Features: CockroachDB is known for its geo-distribution capabilities, compatibility with PostgreSQL protocols, and robust security features. It offers excellent documentation and learning resources, making it appealing to those seeking a distributed, cloud-native solution. ClickHouse excels in speed and efficiency, ideal for handling large-scale data queries and aggregations with its column-based architecture. Its scalability and cost-effectiveness make it a strong contender for analytical workloads.
Room for Improvement: CockroachDB could improve in PostgreSQL compatibility, price transparency, and disaster recovery capabilities. Users also seek better integrations and a more streamlined UI for non-technical users. ClickHouse needs enhanced integration with third-party tools and expanded SQL compatibility for easier migration from other databases. Additionally, its documentation could be more comprehensive, and solutions for handling transactional data are needed to serve a broader range of use cases.
Ease of Deployment and Customer Service: CockroachDB offers cloud and on-premises deployment options but receives criticism for support responsiveness and cost efficiency in 24/7 enterprise support. ClickHouse provides hybrid and on-premise deployments and is known for a more straightforward deployment process in private environments. Support feedback is mixed, with ClickHouse's technical challenges sometimes requiring a knowledgeable team for smooth operation.
Pricing and ROI: CockroachDB has a scalable pricing model with options from free trials to enterprise contracts, attractive to various organization sizes, though the enterprise pricing can be steep. Its cloud accessibility adds cost-effectiveness. ClickHouse offers a free open-source model, which is flexible and cost-efficient, especially for in-house deployments. ClickHouse's cloud services are considered cost-effective, offering good ROI for fast, large-scale data processing.
I estimate we save four to five hours per person per week due to this efficiency, translating to around 20 to 25 hours saved monthly for each individual.
We could reduce the amount of employees needed when we migrated to ClickHouse Cloud.
With ClickHouse, we didn't need to spend much on resources, cutting costs by around 25 to 30%.
If more timely support could be provided during critical issues, situations could have been resolved much more quickly, saving considerable time.
When we faced any challenges, the ClickHouse support team provided helpful resolutions.
We utilize AVN ClickHouse, which is effectively managed by AVN, providing bug fixes and developing new functionalities along with architecture reviews.
The issue was resolved efficiently.
The vertical scalability is impressive, with high insert throughput, allowing millions of rows per second with low latency.
ClickHouse is highly scalable.
The scalability of ClickHouse is great.
I can confidently say that it is very consistent and stable even when handling high volume loads and real-time streaming analytics across financial and operational domains.
ClickHouse handles large volumes of data efficiently.
ClickHouse is stable, as we did not encounter stability issues in production.
Another challenge is the lack of robust support for transactional databases, which limits its use as a primary database.
ClickHouse should be able to import data from other types of sources like Parquet and Iceberg tables and all the new upcoming data formats.
My experience with ClickHouse's documentation is that it needs improvement; I think it can be made more beginner-friendly, while the community support is really good.
For multi-region deployment, CockroachDB requires at least three plus replicas across data centers to achieve strong consistency across regions, which increases infrastructure costs including compute, storage, and networking.
My experience with pricing, setup cost, and licensing indicates that it is very expensive—ClickHouse is the most expensive option.
ClickHouse is open source with no hidden fees, offering cost-effective data management.
I found ClickHouse's pricing to be efficient in comparison to other services such as Redshift.
ClickHouse has reduced our storage cost and improved our 99th percentile latency by 40%.
For cost optimization, after deploying the cluster on-premises and using S3 Express, approximately 5x cost savings were achieved on data storage.
ClickHouse positively impacted our organization by absorbing the whole logging system without hassle, storing logs for six months efficiently.
CockroachDB's geo-distribution feature is superior to traditional databases.
| Product | Market Share (%) |
|---|---|
| ClickHouse | 4.4% |
| CockroachDB | 0.5% |
| Other | 95.1% |

| Company Size | Count |
|---|---|
| Small Business | 13 |
| Midsize Enterprise | 4 |
| Large Enterprise | 8 |
| Company Size | Count |
|---|---|
| Small Business | 7 |
| Midsize Enterprise | 1 |
| Large Enterprise | 5 |
ClickHouse is renowned for its speed, scalability, and real-time query performance. Its compatibility with SQL standards enhances flexibility while enabling integration with popular tools.
ClickHouse leverages a column-based architecture for efficient data compression and real-time analytics. It seamlessly integrates with tools like Kafka and Tableau and is effective in handling large datasets due to its cost-efficient aggregation capabilities. With robust data deduplication and strong community backing, users can access comprehensive documentation and up-to-date functionality. However, improvements in third-party integration, cloud deployment, and handling of SQL syntax differences are noted, impacting ease-of-use and migration from other databases.
What features make ClickHouse outstanding?
What benefits should users consider?
ClickHouse is deployed in sectors like telecommunications for passive monitoring and is beneficial for data analytics, logging Clickstream data, and as an ETL engine. Organizations harness it for machine learning applications when combined with GPT. With the ability to be installed independently, it's an attractive option for avoiding cloud service costs.
Cockroach Labs is the creator of CockroachDB, the cloud-native, resilient, distributed SQL database enterprises worldwide trust to run mission-critical AI and other applications that scale fast, avert and survive disaster, and thrive everywhere. It runs on the Big 3 clouds, on prem, and in hybrid configurations powering Fortune 500, Forbes Global 2000, and Inc. 5000 brands, and game-changing innovators, including OpenAI, CoreWeave, Adobe, Netflix, Booking.com, DoorDash, FanDuel, Cisco, P&G, UiPath, Fortinet, Roblox, EA, BestBuy, SpaceX, Nvidia, the USVA, and HPE. Cockroach Labs has customers in 40+ countries across all world regions, 25+ verticals, and 50+ Use Cases. Cockroach Labs operates its own ISV Partner Ecosystem powering Payments, Identity Management (IDM/IAM), Banking & Wallet, Trading, and other high-demand use cases. Cockroach Labs is an AWS Partner of the Year finalist and has achieved AWS Competency Partner certifications in Data & Analytics and Financial Services (FSI). CockroachDB pricing is available at https://www.cockroachlabs.com/pricing/
Vector, RAG, and GenAI Workloads
CockroachDB includes native support for the VECTOR data type and pgvector API compatibility, enabling storage and retrieval of high-dimensional embeddings. These vector capabilities are critical for Retrieval-Augmented Generation (RAG) pipelines and GenAI workloads that rely on similarity search and contextual embeddings. By supporting distributed vector indexing within the database itself, CockroachDB removes the need for external vector stores and allows AI applications to operate against a single, consistent data layer.
C-SPANN Distributed Indexing
At the core of CockroachDB’s vector search capabilities is the C-SPANN indexing engine. C-SPANN provides scalable approximate nearest neighbor (ANN) search across billions of vectors while supporting incremental updates, real-time writes, and partitioned indexing. This ensures low-latency retrieval in the tens of milliseconds, even under high query throughput. The algorithm eliminates central coordinators, avoids large in-memory structures, and leverages CockroachDB’s sharding and replication to deliver scale, resilience, and global consistency.
Machine Learning and Apache Spark Integration
CockroachDB integrates with modern ML workflows by supporting embeddings generated through frameworks such as AWS Bedrock and Google Vertex AI. Its compatibility with the PostgreSQL JDBC driver allows seamless integration with Apache Spark, enabling distributed processing and advanced analytics on CockroachDB data.
PostgreSQL Compatibility and JSON Support
CockroachDB speaks the PostgreSQL wire protocol, so applications, drivers, and tools designed to work with Postgres can connect to CockroachDB without modification, enabling seamless use of familiar SQL features and integration with the wider Postgres ecosystem. This includes support for advanced data types such as JSON and JSONB, which allow developers to store and query semi-structured data natively.
Geospatial and Graph Capabilities
CockroachDB also provides first-class geospatial data support, allowing developers to store, query, and analyze spatial data directly in SQL. For graph workloads, CockroachDB employs JSON flexibility to represent relationships and delivers query capabilities for graph-like traversals. This combination enables hybrid applications that merge relational, geospatial, document, and graph data within a single platform.
Analytics, BI, and Integration
To support high-performance analytics and BI, CockroachDB supports core analytical use cases and functions including Enterprise Data Warehouse, Lakehouse, and Event Analytics, and offers materialized views for precomputing complex joins and aggregations. Its PostgreSQL wire compatibility ensures direct connectivity with all relevant BI and analytics apps and tools including Amazon Redshift, Snowflake, Kafka, Google BigQuery, Salesforce Tableau, Databricks, Cognos, Looker, Grafana, Power BI, Qlik Sense, SAP, SAS, Sisense, and TIBCO Spotfire. Data scientists can interact with CockroachDB through Jupyter Notebooks, querying structured and semi-structured data and loading results for analysis. Change data capture (CDC) streams provide real-time updates to analytics pipelines and feature stores, keeping downstream systems fresh and reliable. Columnar vectorized execution accelerates query processing, optimizes transactional throughput, and minimizes latency for demanding distributed workloads.
MOLT AI-Powered Migration
Organizations often know their data infrastructure is not supporting the business, but find it too painful to change. CockroachDB’s MOLT (Migrate Off Legacy Technology) is designed to enable safe, minimal-downtime database migrations from legacy systems to CockroachDB. MOLT Fetch supports data migration from PostgreSQL, MySQL, SQL Server, and Oracle, with SQL Server and DB2 coming soon. CockroachDB also has a portfolio of data replication platform integrations including Precisely, Striim, Qlik, Confluent, IBM, etc.
Together, these capabilities ensure that CockroachDB supports both operational and analytical workloads, bridging traditional SQL applications with emerging Gen AI and ML use cases.
We monitor all Vector Databases reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.