Oracle Advanced Analytics and KNIME compete in the analytics software space, offering advanced data processing and analytics capabilities. KNIME holds an advantage due to its open-source model, providing a budget-friendly option, while Oracle Advanced Analytics offers better integration with Oracle’s ecosystem.
Features: Oracle Advanced Analytics provides strong data visualization and mining integrated with Oracle databases, enhances productivity, and offers a robust interface. KNIME, known for its workflow-centric approach, offers data preparation, seamless integration with languages like Python and R, and supports big data connectivity.
Room for Improvement: Oracle Advanced Analytics could improve its deployment flexibility, user interface intuitiveness, and integration with non-Oracle databases. KNIME can enhance its handling of massive data sets, reduce the initial learning curve for complex workflows, and improve documentation comprehensiveness.
Ease of Deployment and Customer Service: Oracle Advanced Analytics fits best in enterprises with Oracle infrastructure, requiring extensive deployment efforts but providing comprehensive support. KNIME allows faster setup and easier deployment in varied environments, benefiting from strong community support and developer-friendly features.
Pricing and ROI: Oracle Advanced Analytics involves higher costs due to licensing but provides substantial returns when integrated with Oracle systems. KNIME, as an open-source platform, offers minimal upfront costs, promoting high ROI in price-sensitive scenarios without heavy investment.
KNIME is an open-source analytics software used for creating data science that is built on a GUI based workflow, eliminating the need to know code. The solution has an inherent modular workflow approach that documents and stores the analysis process in the same order it was conceived and implemented, while ensuring that intermediate results are always available.
KNIME supports Windows, Linux, and Mac operating systems and is suitable for enterprises of all different sizes. With KNIME, you can perform functions ranging from basic I/O to data manipulations, transformations and data mining. It consolidates all the functions of the entire process into a single workflow. The solution covers all main data wrangling and machine learning techniques, and is based on visual programming.
KNIME Features
KNIME has many valuable key features. Some of the most useful ones include:
KNIME Benefits
There are many benefits to implementing KNIME. Some of the biggest advantages the solution offers include:
Reviews from Real Users
Below are some reviews and helpful feedback written by PeerSpot users currently using the KNIME solution.
An Emeritus Professor at a university says, “It can read many different file formats. It can very easily tidy up your data, deleting blank rows, and deleting rows where certain columns are missing. It allows you to make lots of changes internally, which you do using JavaScript to put in the conditional. It also has very good fundamental machine learning. It has decision trees, linear regression, and neural nets. It has a lot of text mining facilities as well. It's fairly fully-featured.”
Benedikt S., CEO at SMH - Schwaiger Management Holding GmbH, explains, “All of the features related to the ETL are fantastic. That includes the connectors to other programs, databases, and the meta node function. Technical support has been extremely responsive so far. The solution has a very strong and supportive community that shares information and helps each other troubleshoot. The solution is very stable. The initial setup is pretty simple and straightforward.”
Piotr Ś., Test Engineer at ProData Consult, says, “What I like the most is that it works almost out of the box with Random Forest and other Forest nodes.”
Oracle Advanced Analytics 12c delivers parallelized in-database implementations of data mining algorithms and integration with open source R. Data analysts use Oracle Data Miner GUI and R to build and evaluate predictive models and leverage R packages and graphs. Application developers deploy Oracle Advanced Analytics models using SQL data mining functions and R. With the Oracle Advanced Analytics option, Oracle extends the Oracle Database to an sclable analytical platform that mines more data and data types, eliminates data movement, and preserves security to anticipate customer behavior, detect patterns, and deliver actionable insights. Oracle Big Data SQL adds new big data sources and Oracle R Advanced Analytics for Hadoop provides algorithms that run on Hadoop.
We monitor all Data Mining reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.