Try our new research platform with insights from 80,000+ expert users

Dataiku vs KNIME comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
KNIME
Ranking in Data Science Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Dataiku is 13.0%, up from 9.2% compared to the previous year. The mindshare of KNIME is 11.9%, up from 10.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.
Laurence Moseley - PeerSpot reviewer
Has a drag-and-drop interface and AI capabilities
It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data. Next, you can clean the data by handling missing values, selecting specific columns you want to analyze, and then proceeding with your analysis, such as regression or correlation. KNIME has over 4,500 nodes available for download. In addition, KNIME offers various extensions. For instance, the text processing extension allows you to process text data efficiently. It's more powerful than other tools like NVivo and Palantir. KNIME also has AI capabilities. If you're unsure about the next step, the AI assistant can suggest the most frequently used nodes based on your previous work. Another valuable feature is the integration with Python. If you need to perform a task that requires Python, you can simply add a Python node, write the necessary code,

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"Our clients can easily drag and drop components and use them on the spot."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"One of the valuable features of Dataiku is the workflow capability."
"Data Science Studio's data science model is very useful."
"I believe the return on investment looks positive."
"The solution is quite stable."
"It allows for a user-friendly approach where you can simply drag and drop elements to create your model, which is a convenient and effective idea."
"The solution allows for sharing model designs and model operations with other data analysts."
"It is very fast to develop solutions."
"I would rate the stability of KNIME a ten out of ten."
"The product is very easy to understand even for non-analytical stakeholders. Sometimes we provide them with KNIME workflows and teach them how to run it on their own machine."
"The most valuable feature is the data wrangling, which is what I mainly use it for."
"What I like most about KNIME is that it's user-friendly. It's a low-code, no-code tool, so students don't need coding knowledge. You can make use of different kinds of nodes. KNIME even has a good description of each node."
"I've tried to utilize KNIME to the fullest extent possible to replace Excel."
 

Cons

"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"The solution is inconvenient when it comes to wrangling data that includes multiple steps or features because each step or feature requires its own icon."
"The most difficult part of the solution revolves around its areas concerning machine learning and deep learning."
"From the point of view of the interface, they can do a little bit better."
"I've had some problems integrating KNIME with other solutions."
"KNIME is not scalable."
"The current UI is primarily in English. Analyzing data in local languages might present challenges or issues."
"Though I can use KNIME in a 64-bit platform in the lab, it's missing some features. For example, from my laptop, I can use the image reader feature of KNIME. However, in the lab, the image reader node is missing."
"​The data visualization part is the area most in need of improvement."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"The price for Knime is okay."
"We're using the free academic license just locally. I went for KNIME because they have a free academic license."
"It is expensive to procure the license."
"KNIME assets are stand alone, as the solution is open source."
"It is free of cost. It is GNU licensed."
"The price of KNIME is quite reasonable and the designer tool can be used free of charge."
"KNIME is a cheap product. I currently use KNIME's open-source version."
"While there are certain limitations in functionality, you can still utilize it efficiently free of charge."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
861,490 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Energy/Utilities Company
6%
Financial Services Firm
12%
Manufacturing Company
10%
Computer Software Company
9%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Comparisons

 

Also Known As

Dataiku DSS
KNIME Analytics Platform
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about Dataiku vs. KNIME and other solutions. Updated: June 2025.
861,490 professionals have used our research since 2012.