Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera Data Science Workb...
Ranking in Data Science Platforms
24th
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (4th)
 

Mindshare comparison

As of September 2025, in the Data Science Platforms category, the mindshare of Cloudera Data Science Workbench is 1.3%, down from 1.6% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 4.9%, down from 6.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio4.9%
Cloudera Data Science Workbench1.3%
Other93.8%
Data Science Platforms
 

Featured Reviews

Ismail Peer - PeerSpot reviewer
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The Cloudera Data Science Workbench is customizable and easy to use."
"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"Azure's AutoML feature is probably better than the competition."
"It is a scalable solution…It is a pretty stable solution…The solution's initial setup process was pretty straightforward."
"When you import the dataset you can see the data distribution easily with graphics and statistical measures."
"I like being able to compare results across different training runs. The hyperparameter tuning function is a valuable feature because it provides the ability to run multiple experiments at the same time and compare results."
"The solution is really scalable."
"I find Microsoft Azure Machine Learning Studio advantageous because it allows integration with Titan Scratch and offers an easy-to-use drag-and-drop menu for developing machine learning models."
"Visualisation, and the possibility of sharing functions are key features."
 

Cons

"The tool's MLOps is not good. It's pricing also needs to improve."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"In the future, I would like to see more AI consultation like image and video classification, and improvement in the presentation of data."
"This solution could be improved if they could integrate the data pipeline scheduling part for their interface."
"The data preparation capabilities need to be improved."
"Improvement in integration is crucial, and it'll be interesting to see how it develops, especially with SAP's move towards cloud-based solutions like SAP Rise and its collaboration with hyper scalers like AWS. Integrating SAP with hyperscaler machine learning solutions could simplify operations, although SAP's environment is complex. SAP has initiated deals with AWS for this purpose, but I'm not as familiar with Microsoft Azure Machine Learning Studio's involvement."
"I have found Databricks is a better solution because it has a lot of different cluster choices and better integration with MLflow, which is much easier to handle in a machine learning system."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"The pricing policy should be improved. I find the pricing to be not a good story in this case, as it is not affordable for everyone."
 

Pricing and Cost Advice

"The product is expensive."
"It is less expensive than one of its competitors."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"The product is not that expensive."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"The product's pricing is reasonable."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
867,676 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
34%
Healthcare Company
9%
Computer Software Company
8%
Manufacturing Company
8%
Financial Services Firm
12%
Computer Software Company
9%
Manufacturing Company
9%
University
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

CDSW
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

IQVIA, Rush University Medical Center, Western Union
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Cloudera Data Science Workbench vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: July 2025.
867,676 professionals have used our research since 2012.