Try our new research platform with insights from 80,000+ expert users

Hugging Face vs PyTorch comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
PyTorch
Ranking in AI Development Platforms
6th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 11.4%, up from 11.3% compared to the previous year. The mindshare of PyTorch is 3.5%, up from 1.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face11.4%
PyTorch3.5%
Other85.1%
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
Rohan Sharma - PeerSpot reviewer
Enabled creation of innovative projects through developer-friendly features
The aspect I like most about PyTorch is that it is really developer-friendly. Developers can constantly create new things, and everyone around the world can use it for free because it's an open-source product. What I personally like is that PyTorch has enabled users to use Apple's M1 chip natively for GPU users. Unlike other libraries using CUDA, PyTorch utilizes Metal Performance Shaders (MPS) to enable GPU usage on M1 chips.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The product is reliable."
"My preferred aspects are natural language processing and question-answering."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"I appreciate the versatility and the fact that it has generalized many models."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"The tool's most valuable feature is that it's open-source and has hundreds of packages already available. This makes it quite helpful for creating our LLMs."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"I like that Hugging Face is versatile in the way it has been developed."
"yTorch is gaining credibility in the research space, it's becoming easier to find examples of papers that use PyTorch. This is an advantage for someone who uses PyTorch primarily."
"We use PyTorch libraries, which are working well. It's very easy."
"Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the same technical elements, is very useful."
"The framework of the solution is valuable."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"It's been pretty scalable in terms of using multiple GPUs."
"It’s reliable, secure and user-friendly. It allows you to develop any AIML project efficiently. PySearch is the best option for developing any project in the AIML domain. The product is easy to install."
"For me, the product's initial setup phase is easy...For beginners, it is fairly easy to learn."
 

Cons

"The solution must provide an efficient LLM."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"It can incorporate AI into its services."
"Implementing a cloud system to showcase historical data would be beneficial."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"Initially, I faced issues with the solution's configuration."
"Access to the models and datasets could be improved."
"I do not have any complaints."
"I've had issues with stability when I use a lot of data and try out different combinations of modeling techniques."
"I would like a model to be available. I think Google recently released a new version of EfficientNet. It's a really good classifier, and a PyTorch implementation would be nice."
"PyTorch could make certain things more obvious. Even though it does make things like defining loss functions and calculating gradients in backward propagation clear, these concepts may confuse beginners. We find that it's kind of problematic. Despite having methods called on loss functions during backward passes, the oral documentation for beginners is quite complex."
"I would like to see better learning documents."
"The product has certain shortcomings in the automation of machine learning."
"PyTorch needs improvement in working on ARM-based chips. They have unified memory for GPU and RAM, however, current GPUs used for processing are slow."
"The training of the models could be faster."
 

Pricing and Cost Advice

"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"So, it's requires expensive machines to open services or open LLM models."
"We do not have to pay for the product."
"Hugging Face is an open-source solution."
"The solution is open source."
"PyTorch is open source."
"PyTorch is open-sourced."
"The solution is affordable."
"It is free."
"It is free."
"PyTorch is an open-source solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
872,706 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
10%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
Manufacturing Company
23%
Comms Service Provider
10%
Educational Organization
10%
Performing Arts
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise3
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise4
Large Enterprise4
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
What is your experience regarding pricing and costs for PyTorch?
I haven't gone for a paid plan yet. I've just been using the free trial or open-source version.
What needs improvement with PyTorch?
PyTorch needs improvement in working on ARM-based chips. Although they have unified memory for GPU and RAM, they are unable to utilize these GPUs for processing efficiently. They take so much time....
 

Comparisons

 

Overview

Find out what your peers are saying about Hugging Face vs. PyTorch and other solutions. Updated: September 2025.
872,706 professionals have used our research since 2012.