Try our new research platform with insights from 80,000+ expert users

Hugging Face vs PyTorch comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
PyTorch
Ranking in AI Development Platforms
7th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of July 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 12.8%, up from 9.1% compared to the previous year. The mindshare of PyTorch is 2.4%, up from 1.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
Rohan Sharma - PeerSpot reviewer
Enabled creation of innovative projects through developer-friendly features
The aspect I like most about PyTorch is that it is really developer-friendly. Developers can constantly create new things, and everyone around the world can use it for free because it's an open-source product. What I personally like is that PyTorch has enabled users to use Apple's M1 chip natively for GPU users. Unlike other libraries using CUDA, PyTorch utilizes Metal Performance Shaders (MPS) to enable GPU usage on M1 chips.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I like that Hugging Face is versatile in the way it has been developed."
"The product is reliable."
"I would rate this product nine out of ten."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"Overall, the platform is excellent."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"I appreciate the versatility and the fact that it has generalized many models."
"Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the same technical elements, is very useful."
"It’s reliable, secure and user-friendly. It allows you to develop any AIML project efficiently. PySearch is the best option for developing any project in the AIML domain. The product is easy to install."
"It's been pretty scalable in terms of using multiple GPUs."
"PyTorch allows me to build my projects from scratch."
"The product's initial setup phase is easy."
"The framework of the solution is valuable."
"The tool is very user-friendly."
"For me, the product's initial setup phase is easy...For beginners, it is fairly easy to learn."
 

Cons

"The initial setup can be rated as a seven out of ten due to occasional issues during model deployment, which might require adjustments."
"The solution must provide an efficient LLM."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"It can incorporate AI into its services."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"Access to the models and datasets could be improved."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"PyTorch needs improvement in working on ARM-based chips. They have unified memory for GPU and RAM, however, current GPUs used for processing are slow."
"The analyzing and latency of compiling could be improved to provide enhanced results."
"I would like to see better learning documents."
"We faced an issue with PyTorch due to version incompatibility. PyTorch has no latest version after v12.3."
"On the production side of things, having more frameworks would be helpful."
"There is not enough documentation about some methods and parameters. It is sometimes difficult to find information."
"I've had issues with stability when I use a lot of data and try out different combinations of modeling techniques."
"The product has breakdowns when we change the versions a lot."
 

Pricing and Cost Advice

"We do not have to pay for the product."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"The solution is open source."
"Hugging Face is an open-source solution."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"So, it's requires expensive machines to open services or open LLM models."
"It is free."
"The solution is affordable."
"PyTorch is open-sourced."
"PyTorch is an open-source solution."
"PyTorch is open source."
"It is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
864,053 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
10%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
Manufacturing Company
26%
Comms Service Provider
9%
University
9%
Educational Organization
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
What is your experience regarding pricing and costs for PyTorch?
I haven't gone for a paid plan yet. I've just been using the free trial or open-source version.
What needs improvement with PyTorch?
PyTorch needs improvement in working on ARM-based chips. Although they have unified memory for GPU and RAM, they are unable to utilize these GPUs for processing efficiently. They take so much time....
 

Comparisons

 

Overview

Find out what your peers are saying about Hugging Face vs. PyTorch and other solutions. Updated: July 2025.
864,053 professionals have used our research since 2012.