Try our new research platform with insights from 80,000+ expert users

Elastic Search vs IBM Watson Discovery comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Elastic Search
Ranking in Indexing and Search
1st
Average Rating
8.2
Reviews Sentiment
6.7
Number of Reviews
67
Ranking in other categories
Cloud Data Integration (9th), Search as a Service (1st), Vector Databases (2nd)
IBM Watson Discovery
Ranking in Indexing and Search
4th
Average Rating
7.8
Number of Reviews
4
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Indexing and Search category, the mindshare of Elastic Search is 25.4%, down from 26.6% compared to the previous year. The mindshare of IBM Watson Discovery is 4.5%, down from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Indexing and Search
 

Featured Reviews

Anand_Kumar - PeerSpot reviewer
Captures data from all other sources and becomes a MOM aka monitoring of monitors
Scalability and ROI are the areas they have to improve. Their license terms are based on the number of cores. If you increase the number of cores, it becomes very difficult to manage at a large scale. For example, if I have a $3 million project, I won't sell it because if we're dealing with a 10 TB or 50 TB system, there are a lot of systems and applications to monitor, and I have to make an MOM (Mean of Max) for everything. This is because of the cost impact. Also, when you have horizontal scaling, it's like a multi-story building with only one elevator. You have to run around, and it's not efficient. Even the smallest task becomes difficult. That's the problem with horizontal scaling. They need to improve this because if they increase the cores and adjust the licensing accordingly, it would make more sense.
Geraldo Lima - PeerSpot reviewer
Stable, scalable, and has testing and conversational AI features
The total time it takes to deploy IBM Watson Discovery depends on the documents you'll be working with. For example, I was in a situation where I was working with some painting files and folders for a painting store. The store had PDF documents, but the information was mixed up, so I had to treat the documents on IBM Watson Discovery, and discovering and understanding each PDF file took longer. The process is more straightforward for plain documents, and you have to work with questions that will help IBM Watson Discovery understand the documents. The time to deploy the product depends on the quantity and type of documents you'll be working with.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is quite scalable and this is one of its advantages."
"The most valuable feature of Elasticsearch is its convenience in handling unstructured data."
"The initial installation and setup were straightforward."
"It is stable."
"The most valuable feature of Elastic Enterprise Search is the Discovery option for the visualization of logs on a GPU instead of on the server."
"The most valuable feature is the out of the box Kibana."
"The most valuable feature of Elastic Enterprise Search is the opportunity to search behind and between different logs."
"The tool's stability and performance are good."
"Language support and the ability to build a natural language of speech recognition are the most valuable features."
"The most valuable feature of IBM Watson Discovery is testing, mainly because the product applies conversational AI, which means I can ask questions to get the information I want from a specific test area."
"Being able to have some rules to extract the entities is valuable. The capability to crawl external sites and internal documents, and then draw internal information with external contents is also valuable."
"The most valuable features of IBM Watson Discovery are the integration with the rest of the Watson Suite and the Watson Assistant capability. If you use Watson Assistant, the ability for it to be able to determine the accuracy of your voice models and your voice response systems is a benefit."
 

Cons

"The solution must provide AI integrations."
"There is an index issue in which the data starts to crash as it increases."
"It should be easier to use. It has been getting better because many functions are pre-defined, but it still needs improvement."
"The different applications need to be individually deployed."
"They could improve some of the platform's infrastructure management capabilities."
"Its licensing needs to be improved. They don't offer a perpetual license. They want to know how many nodes you will be using, and they ask for an annual subscription. Otherwise, they don't give you permission to use it. Our customers are generally military or police departments or customers without connection to the internet. Therefore, this model is not suitable for us. This subscription-based model is not the best for OEM vendors. Another annoying thing about Elasticsearch is its roadmap. We are developing something, and then they say, "Okay. We have removed that feature in this release," and when we are adapting to that release, they say, "Okay. We have removed that one as well." We don't know what they will remove in the next version. They are not looking for backward compatibility from the customers' perspective. They just remove a feature and say, "Okay. We've removed this one." In terms of new features, it should have an ODBC driver so that you can search and integrate this product with existing BI tools and reporting tools. Currently, you need to go for third parties, such as CData, in order to achieve this. ODBC driver is the most important feature required. Its Community Edition does not have security features. For example, you cannot authenticate with a username and password. It should have security features. They might have put it in the latest release."
"The GUI is the part of the program which has the most room for improvement."
"There is a lack of technical people to develop, implement and optimize equipment operation and web queries."
"It needs a lot of memory. Our index is very big. It is around 100 gigabytes. So, we need more than 100 gigabytes of memory to use Watson."
"The support from IBM Watson Discovery is good but could improve to make it great."
"The pricing is an area for improvement in IBM Watson Discovery because the customer initially used the free version. Still, when he needed more questions and documents, he had to move to a different version, which was paid and cost $500 per month. That change in pricing made my company lose many customers."
"There are probably other chatbots out there that were built for specific use cases and are easier to deploy than this. Having said that, Watson is way more flexible. While it may require a greater amount of effort, it is not substantially more than some of the other ones that are kind of prebuilt for a specific use case. It would be good to have more prebuilt and specific use cases and specific business models. It can have better phone integration, even though I think that it is actually becoming less of an issue. Most people are online nowadays."
 

Pricing and Cost Advice

"The premium license is expensive."
"This is a free, open source software (FOSS) tool, which means no cost on the front-end. There are no free lunches in this world though. Technical skill to implement and support are costly on the back-end with ELK, whether you train/hire internally or go for premium services from Elastic."
"The price of Elasticsearch is fair. It is a more expensive solution, like QRadar. The price for Elasticsearch is not much more than other solutions we have."
"we are using a licensed version of the product."
"The solution is not expensive because users have the option of choosing the managed or the subscription model."
"We are using the free version and intend to upgrade."
"ELK has been considered as an alternative to Splunk to reduce licensing costs."
"This product is open-source and can be used free of charge."
"IBM Watson Discovery is an expensive product."
"Cost-wise, it is very reasonable because it is cloud-based."
report
Use our free recommendation engine to learn which Indexing and Search solutions are best for your needs.
849,600 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
17%
Financial Services Firm
15%
Government
9%
Manufacturing Company
8%
Computer Software Company
36%
Government
16%
University
11%
Financial Services Firm
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
I don't know about pricing. That is dealt with by the sales team and our account team. I was not involved with that.
What needs improvement with ELK Elasticsearch?
I found an issue with Elasticsearch in terms of aggregation. They are good, yet the rules written for this are not really good. There is a maximum of 10,000 entries, so the limitation means that if...
Ask a question
Earn 20 points
 

Also Known As

Elastic Enterprise Search, Swiftype, Elastic Cloud
No data available
 

Overview

 

Sample Customers

T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
Prudential, Bradesco, Woodside
Find out what your peers are saying about Elastic Search vs. IBM Watson Discovery and other solutions. Updated: April 2025.
849,600 professionals have used our research since 2012.