Try our new research platform with insights from 80,000+ expert users

Elastic Search vs Faiss comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 5, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Elastic Search
Ranking in Vector Databases
3rd
Average Rating
8.2
Reviews Sentiment
6.7
Number of Reviews
72
Ranking in other categories
Indexing and Search (1st), Cloud Data Integration (10th), Search as a Service (1st)
Faiss
Ranking in Vector Databases
5th
Average Rating
8.0
Reviews Sentiment
3.3
Number of Reviews
3
Ranking in other categories
Open Source Databases (12th)
 

Mindshare comparison

As of September 2025, in the Vector Databases category, the mindshare of Elastic Search is 4.6%, down from 6.9% compared to the previous year. The mindshare of Faiss is 5.6%, down from 14.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Vector Databases Market Share Distribution
ProductMarket Share (%)
Elastic Search4.6%
Faiss5.6%
Other89.8%
Vector Databases
 

Featured Reviews

Anand_Kumar - PeerSpot reviewer
Captures data from all other sources and becomes a MOM aka monitoring of monitors
Scalability and ROI are the areas they have to improve. Their license terms are based on the number of cores. If you increase the number of cores, it becomes very difficult to manage at a large scale. For example, if I have a $3 million project, I won't sell it because if we're dealing with a 10 TB or 50 TB system, there are a lot of systems and applications to monitor, and I have to make an MOM (Mean of Max) for everything. This is because of the cost impact. Also, when you have horizontal scaling, it's like a multi-story building with only one elevator. You have to run around, and it's not efficient. Even the smallest task becomes difficult. That's the problem with horizontal scaling. They need to improve this because if they increase the cores and adjust the licensing accordingly, it would make more sense.
Kalindu Sekarage - PeerSpot reviewer
Integration improves accuracy and supports token-level embedding
The best features FAISS offers for my team include seamless integration with Colbert and the ability to use FAISS via the Ragatouille framework, which is tailor-made for using the Colbert model. Feature-wise, FAISS allows for more accurate result retrieval, and retrieval speed is also good when comparing the index size. Regarding features, I also emphasize that the usability of FAISS is very seamless, particularly its integration with Colbert and Ragatouille. FAISS has positively impacted my organization by helping us increase the accuracy of retrieval documents; when we store documents in token-level embedding, the accuracy will be high. Additionally, we do not need any external server to host FAISS, allowing us to integrate it with our backend framework, making it a very flexible framework.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"You have dashboards, it is visual, there are maps, you can create canvases. It's more visual than anything that I've ever used."
"I appreciate that Elastic Enterprise Search is easy to use and that we have people on our team who are able to manage it effectively."
"The product is scalable with good performance."
"The most valuable features are the data store and the X-pack extension."
"X-Pack provides good features, like authorization and alerts."
"It provides deep visibility into your cloud and distributed applications, from microservices to serverless architectures. It quickly identifies and resolves the root causes of issues, like gaining visibility into all the cloud-based and on-prem applications."
"The initial setup is fairly simple."
"There's lots of processing power. You can actually just add machines to get more performance if you need to. It's pretty flexible and very easy to add another log. It's not like 'oh, no, it's going to be so much extra data'. That's not a problem for the machine. It can handle it."
"I used Faiss as a basic database."
"The product has better performance and stability compared to one of its competitors."
 

Cons

"While integrating with tools like agents for ingesting data from sources like firewalls is valuable, I believe prioritizing improvements to the core product would be more beneficial."
"There is a maximum of 10,000 entries, so the limitation means that if I wanted to analyze certain IP addresses more than 10,000 times, I wouldn't be able to dump or print that information."
"Technical support should be faster."
"There are challenges with performance management and scalability."
"The different applications need to be individually deployed."
"Ratio aggregation is not supported in this solution."
"Something that could be improved is better integrations with Cortex and QRadar, for example."
"The price could be better. Kibana has some limitations in terms of the tablet to view event logs. I also have a high volume of data. On the initialization part, if you chose Kibana, you'll have some limitations. Kibana was primarily proposed as a log data reviewer to build applications to the viewer log data using Kibana. Then it became a virtualization tool, but it still has limitations from a developer's point of view."
"One of the drawbacks of Faiss is that it works only in-memory. If it could provide separate persistent storage without relying on in-memory, it would reduce the overhead."
"It could be more accessible for handling larger data sets."
"It would be beneficial if I could set a parameter and see different query mechanisms being run."
 

Pricing and Cost Advice

"ELK has been considered as an alternative to Splunk to reduce licensing costs."
"The basic license is free, but it comes with a lot of features that aren't free. With a gold license, we get active directory integration. With a platinum license, we get alerting."
"The tool is an open-source product."
"This product is open-source and can be used free of charge."
"​The pricing and license model are clear: node-based model."
"It can be expensive."
"To access all the features available you require both the open source license and the production license."
"An X-Pack license is more affordable than Splunk."
"It is an open-source tool."
"Faiss is an open-source solution."
report
Use our free recommendation engine to learn which Vector Databases solutions are best for your needs.
867,341 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
13%
Manufacturing Company
8%
Government
8%
Computer Software Company
18%
Financial Services Firm
14%
Manufacturing Company
8%
Educational Organization
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business33
Midsize Enterprise8
Large Enterprise33
No data available
 

Questions from the Community

What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
We used the open-source version of Elasticsearch, which was free.
What needs improvement with ELK Elasticsearch?
Elastic Search could improve in areas such as search criteria and query processes, as search times were longer prior to implementing Elastic Search. Elastic Search has limitations for handling huge...
What do you like most about Faiss?
I used Faiss as a basic database.
What is your experience regarding pricing and costs for Faiss?
I did not purchase FAISS through the AWS Marketplace because FAISS is an open-source product. My experience with pricing, setup cost, and licensing is straightforward, as there is no cost for acqui...
What needs improvement with Faiss?
I currently do not think there is anything to be improved based on our experience, as Faiss performs as we expected for our workflow. I would like to see improvement in the fact that FAISS currentl...
 

Comparisons

 

Also Known As

Elastic Enterprise Search, Swiftype, Elastic Cloud
No data available
 

Overview

 

Sample Customers

T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
1. Facebook 2. Airbnb 3. Pinterest 4. Twitter 5. Microsoft 6. Uber 7. LinkedIn 8. Netflix 9. Spotify 10. Adobe 11. eBay 12. Dropbox 13. Yelp 14. Salesforce 15. IBM 16. Intel 17. Nvidia 18. Qualcomm 19. Samsung 20. Sony 21. Tencent 22. Alibaba 23. Baidu 24. JD.com 25. Rakuten 26. Zillow 27. Booking.com 28. Expedia 29. TripAdvisor 30. Rakuten 31. Rakuten Viber 32. Rakuten Ichiba
Find out what your peers are saying about Elastic Search vs. Faiss and other solutions. Updated: July 2025.
867,341 professionals have used our research since 2012.