Try our new research platform with insights from 80,000+ expert users

Dataiku vs KNIME comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
KNIME
Ranking in Data Science Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Dataiku is 13.0%, up from 9.2% compared to the previous year. The mindshare of KNIME is 11.9%, up from 10.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.
Laurence Moseley - PeerSpot reviewer
Has a drag-and-drop interface and AI capabilities
It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data. Next, you can clean the data by handling missing values, selecting specific columns you want to analyze, and then proceeding with your analysis, such as regression or correlation. KNIME has over 4,500 nodes available for download. In addition, KNIME offers various extensions. For instance, the text processing extension allows you to process text data efficiently. It's more powerful than other tools like NVivo and Palantir. KNIME also has AI capabilities. If you're unsure about the next step, the AI assistant can suggest the most frequently used nodes based on your previous work. Another valuable feature is the integration with Python. If you need to perform a task that requires Python, you can simply add a Python node, write the necessary code,

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Data Science Studio's data science model is very useful."
"One of the valuable features of Dataiku is the workflow capability."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"The solution is quite stable."
"I rate the overall product as eight out of ten."
"I believe the return on investment looks positive."
"It is possible to configure the system to effectively manage memory and space requirements."
"The product is very easy to understand even for non-analytical stakeholders. Sometimes we provide them with KNIME workflows and teach them how to run it on their own machine."
"Clear view of the data at every step of ETL process enables changing the flow as needed."
"Usability, and organising workflows in very neat manner. Controlling workflow through variables is something amazing."
"The visual workflow tools for custom and complex tasks always beat raw coding languages with the agility, speed to deliver, and ease of subsequent changes."
"This open-source product can compete with category leaders in ELT software."
"Stability is excellent. I would give it a nine out of ten."
"We are able to automate several functions which were done manually. I can integrate several data sets quickly and easily, to support analytics."
 

Cons

"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"I think it would help if Data Science Studio added some more features and improved the data model."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"The main issue with KNIME is that it sometimes uses too much CPU and RAM when working with large amounts of data."
"When deploying models on a regular system, it works fine. However, when accuracy is a priority, hyperparameter tuning is necessary. Currently, KNIME doesn't have the best tools for this which they could improve in this area."
"I've had some problems integrating KNIME with other solutions."
"The dynamic column name feature could be improved. When attempting to automate processes involving columns, such as with companies, it becomes difficult to achieve the same result when we make changes."
"We do not have much documentation in Portuguese."
"I would like to see better web scraping because every time I tried, it was not up to par, although you can use Python script."
"The ability to handle large amounts of data and performance in processing need to be improved."
"Not just for KNIME, but generally for software and analyzing data, I would welcome facilities for analyzing different sorts of scale data like Likert scales, Thurstone scales, magnitude ratio scales, and Guttman scales, which I don't use myself."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"This is an open-source solution that is free to use."
"KNIME is a cost-effective solution because it’s free of cost."
"It's an open-source solution."
"This is a free open-source solution."
"KNIME is free and open source."
"The client versions are mostly free, and we pay only for the KNIME server version. It's not a cheap solution."
"I use the open-source version."
"KNIME is an open-source tool, so it's free to use."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
860,168 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Educational Organization
7%
Financial Services Firm
12%
Manufacturing Company
10%
Computer Software Company
9%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Comparisons

 

Also Known As

Dataiku DSS
KNIME Analytics Platform
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about Dataiku vs. KNIME and other solutions. Updated: June 2025.
860,168 professionals have used our research since 2012.