

Find out in this report how the two Streaming Analytics solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
Returns depend on the application you deploy and the amount of benefits you are getting, which depends on how many applications you are deploying, what are the sorts of applications, and what are the requirements.
For a lot of different tasks, including machine learning, it is a nice solution.
When it comes to big data processing, I prefer Databricks over other solutions.
I was getting prompt responses, and it was nicely handled regarding the support.
I would rate them eight if 10 was the best and one was the worst.
Whenever we reach out, they respond promptly.
As of now, we are raising issues and they are providing solutions without any problems.
I rate the technical support as fine because they have levels of technical support available, especially partners who get really good support from Databricks on new features.
According to me, it is quite scalable in terms of all the data it can handle and stream.
The sky's the limit with Databricks.
The patches have sometimes caused issues leading to our jobs being paused for about six hours.
Databricks is an easily scalable platform.
They release patches that sometimes break our code.
Although it is too early to definitively state the platform's stability, we have not encountered any issues so far.
Databricks is definitely a very stable product and reliable.
If it were easier to configure clusters and had more straightforward configuration, high-level API abstraction in the APIs could improve it.
Regarding additional improvements, I would say probably around error handling, where when we encounter errors specific to our response structures and everything, or the tables or anything of that nature, it would be better if we were prompted with better error handling mechanisms.
Observability and monitoring are areas that could be enhanced.
Adjusting features like worker nodes and node utilization during cluster creation could mitigate these failures.
We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly.
We use MLflow for managing MLOps, however, further improvement would be beneficial, especially for large language models and related tools.
I thought Confluent would stop me when I crossed the credits, but it did not, and then I got charged.
It is not a cheap solution.
I believe that in terms of credits for Databricks, we're spending between £15,000 and £20,000 a month.
These features are important due to scalability and resiliency.
The Kafka Streams API helps with real-time data transformations and aggregations.
The best features Apache Kafka on Confluent Cloud offers would be the connection with various external systems through various languages such as Python and C#.
Databricks' capability to process data in parallel enhances data processing speed.
The platform allows us to leverage cloud advantages effectively, enhancing our AI and ML projects.
The Unity Catalog is for data governance, and the Delta Lake is to build the lakehouse.
| Product | Market Share (%) |
|---|---|
| Databricks | 10.0% |
| Apache Kafka on Confluent Cloud | 0.5% |
| Other | 89.5% |

| Company Size | Count |
|---|---|
| Small Business | 6 |
| Midsize Enterprise | 3 |
| Large Enterprise | 8 |
| Company Size | Count |
|---|---|
| Small Business | 25 |
| Midsize Enterprise | 12 |
| Large Enterprise | 56 |
Apache Kafka on Confluent Cloud provides real-time data streaming with seamless integration, enhanced scalability, and efficient data processing, recognized for its real-time architecture, ease of use, and reliable multi-cloud operations while effectively managing large data volumes.
Apache Kafka on Confluent Cloud is designed to handle large-scale data operations across different cloud environments. It supports real-time data streaming, crucial for applications in transaction processing, change data capture, microservices, and enterprise data movement. Users benefit from features like schema registry and error handling, which ensure efficient and reliable operations. While the platform offers extensive connector support and reduced maintenance, there are areas requiring improvement, including better data analysis features, PyTRAN CDC integration, and cost-effective access to premium connectors. Migrating with Kubernetes and managing message states are areas for development as well. Despite these challenges, it remains a robust option for organizations seeking to distribute data effectively for analytics and real-time systems across industries like retail and finance.
What are the key features of Apache Kafka on Confluent Cloud?In industries like retail and finance, Apache Kafka on Confluent Cloud is implemented to manage real-time location tracking, event-driven systems, and enterprise-level data distribution. It aids in operations that require robust data streaming, such as CDC, log processing, and analytics data distribution, providing a significant edge in data management and operational efficiency.
Databricks offers a scalable, versatile platform that integrates seamlessly with Spark and multiple languages, supporting data engineering, machine learning, and analytics in a unified environment.
Databricks stands out for its scalability, ease of use, and powerful integration with Spark, multiple languages, and leading cloud services like Azure and AWS. It provides tools such as the Notebook for collaboration, Delta Lake for efficient data management, and Unity Catalog for data governance. While enhancing data engineering and machine learning workflows, it faces challenges in visualization and third-party integration, with pricing and user interface navigation being common concerns. Despite needing improvements in connectivity and documentation, it remains popular for tasks like real-time processing and data pipeline management.
What features make Databricks unique?
What benefits can users expect from Databricks?
In the tech industry, Databricks empowers teams to perform comprehensive data analytics, enabling them to conduct extensive ETL operations, run predictive modeling, and prepare data for SparkML. In retail, it supports real-time data processing and batch streaming, aiding in better decision-making. Enterprises across sectors leverage its capabilities for creating secure APIs and managing data lakes effectively.
We monitor all Streaming Analytics reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.