Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
27
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
89
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 8.3%, down from 13.6% compared to the previous year. The mindshare of Databricks is 14.6%, up from 10.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Rajni Kumar Jha - PeerSpot reviewer
Used for media streaming and live-streaming data
It is not compulsory to use Amazon Kinesis. If you don't want to use the data streaming, you can use just the Kinesis data firehose. Using the Kinesis data firehose is compulsory because we can't store all chats and recordings in Amazon S3 without it. When a call comes in the Amazon Kinesis instance, it will go to Data Streams if we use it. Otherwise, it will go to the Kinesis data firehose, where we need to define the S3 bucket path, and it will go to Amazon S3. So, without the Kinesis data firehose, we can't store all the chats and recordings in Amazon S3. Using Amazon Kinesis totally depends upon the user's requirements. If you want to use live streaming for the data lake or data analyst team, you need to use Amazon Kinesis. If you don't want to use it, you can directly use the Kinesis data firehose, which will be stored in Amazon S3. Overall, I rate the solution an eight out of ten.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Kinesis is a fully managed program streaming application. You can manage any infrastructure. It is also scalable. Kinesis can handle any amount of data streaming and process data from hundreds, thousands of processes in every source with very low latency."
"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive."
"Its scalability is very high. There is no maintenance and there is no throughput latency. I think data scalability is high, too. You can ingest gigabytes of data within seconds or milliseconds."
"What turns out to be most valuable is its integration with Lambda functions because you can process the data as it comes in. As soon as data comes, you'll fire a Lambda function to process a trench of data."
"The solution's technical support is flawless."
"Amazon Kinesis has improved our ROI."
"There is no problem with the tool's stability."
"Having one solution for everything, from data engineering to machine learning, is beneficial since everything comes under one hood."
"Databricks has improved my organization by allowing us to transform data from sources to a different format and feed that to the analytics, business intelligence, and reporting teams. This tool makes it easy to do those kinds of things."
"I would rate them ten out of ten."
"Databricks' most valuable feature is the data transformation through PySpark."
"The processing capacity is tremendous in the database."
"The most valuable feature of Databricks is the integration with Microsoft Azure."
"The most valuable aspect of the solution is its notebook. It's quite convenient to use, both terms of the research and the development and also the final deployment, I can just declare the spark jobs by the load tables. It's quite convenient."
"Databricks has helped us have a good presence in data."
 

Cons

"Amazon Kinesis involved a more complex setup and configuration than Azure Event Hub."
"There could be valid data in Kinesis that is not being processed, which affects stability. Although it rarely happens, this issue has been observed in many deployments, making it not completely stable."
"The price is not much cheaper. So, there is room for improvement in the pricing."
"AI processing or cleaning up data would be nice since I don't think it is a feature in Amazon Kinesis right now."
"Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint."
"The solution has a two-minute maximum time delay for live streaming, which could be reduced."
"I suggest integrating additional features, such as incorporating Amazon Pinpoint or Amazon Connect as bundled offerings, rather than deploying them as separate services."
"Kinesis is good for Amazon Cloud but not as suitable for other cloud vendors."
"I believe that this product could be improved by becoming more user-friendly."
"Implementation of Databricks is still very code heavy."
"The solution could improve by providing better automation capabilities. For example, working together with more of a DevOps approach, such as continuous integration."
"Generative AI is catching up in areas like data governance and enterprise flavor. Hence, these are places where Databricks has to be faster."
"The product should provide more advanced features in future releases."
"The integration and query capabilities can be improved."
"While Databricks is generally a robust solution, I have noticed a limitation with debugging in the Delta Live Table, which could be improved."
"There would also be benefits if more options were available for workers, or the clusters of the two points."
 

Pricing and Cost Advice

"The tool's pricing is cheap."
"Under $1,000 per month."
"The pricing depends on the use cases and the level of usage. If you wanted to use Kinesis for different use cases, there's definitely a cheaper base cost involved. However, it's not entirely cheap, as different use cases might require different levels of Kinesis usage."
"I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool."
"I rate the product price a five on a scale of one to ten, where one is cheap, and ten is expensive."
"The fee is based on the number of hours the service is running."
"Amazon Kinesis is an expensive solution."
"The tool's entry price is cheap. However, pricing increases with data volume."
"The price is okay. It's competitive."
"Whenever we want to find the actual costing, we have to send an email to Databricks, so having the information available on the internet would be helpful."
"The solution is a good value for batch processing and huge workloads."
"I would rate the tool’s pricing an eight out of ten."
"I do not exactly know the costs, but one of our clients pays between $100 USD and $200 USD monthly."
"The product pricing is moderate."
"The solution requires a subscription."
"Databricks uses a price-per-use model, where you can use as much compute as you need."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
18%
Financial Services Firm
17%
Manufacturing Company
10%
Retailer
5%
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
Amazon Kinesis is moderately priced. In comparison with other competitors, it is fairly priced, however, if they reduced the price a little, it could add more value to customers.
What needs improvement with Amazon Kinesis?
I do not see any scope for improvement as it does what it is supposed to do. No changes are required. Since it's predominantly a back-end service, any end-user isn't going to interact with it direc...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Comparisons

 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Amazon Kinesis vs. Databricks and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.