

Snowflake and Snowflake Analytics compete in the data warehousing and analytics space. Snowflake appears to have the upper hand in flexibility and performance, while Snowflake Analytics provides advanced analytics features.
Features: Snowflake offers scalability, flexibility, and performance, efficiently handling massive datasets with a distributed architecture. It supports various data formats like CSV, JSON, and AVRO and provides automated storage management with zero maintenance. Snowflake Analytics emphasizes advanced analytics and data-sharing capabilities, enhancing data-driven decision-making.
Room for Improvement: Snowflake could improve geospatial query capabilities and provide better user training for cost-effective usage. Enhancements to command-line tools, support responsiveness, and clearer pricing estimates are needed. Snowflake Analytics needs improved machine learning integration, real-time transactional processing support, and better integration with Python and Jupyter notebooks.
Ease of Deployment and Customer Service: Snowflake is praised for deployment across various cloud environments and high user satisfaction with support and responsiveness. Snowflake Analytics offers flexible deployment primarily in public clouds but receives mixed feedback on support efficiency. Snowflake's technical support is regarded as knowledgeable and efficient.
Pricing and ROI: Snowflake employs a pay-as-you-go pricing model with flexible but sometimes confusing costs. It offers bulk pricing discounts and significant ROI opportunities. Snowflake Analytics is perceived as expensive yet justifiable due to its functionality. Snowflake users find cost management more predictable and scalability easier, offering consistent value for large datasets.
I received great support in migrating data to Snowflake, with quick responses and innovative solutions.
I am satisfied with the work of technical support from Snowflake; they are responsive and helpful.
The technical support from Snowflake is very good, nice, and efficient.
The Snowflake Analytics documentation is excellent.
Recently we had a two-day session where the Snowflake Analytics team provided a demo on Cortex AI and its features.
The technical support for Snowflake Analytics is excellent based on what I have heard from others.
Snowflake is very scalable and has a dedicated team constantly improving the product.
The billing doubles with size increase, but processing does not necessarily speed up accordingly.
Recently, Snowflake has introduced streaming capabilities, real-time and dynamic tables, along with various connectors.
Storage is unlimited because they use S3 if it is AWS, so storage has no limit.
It supports both horizontal and vertical scaling effectively.
Maintaining security and data governance becomes easier with an entire data lake in place, and the scalability improves performance.
Snowflake is very stable, especially when used with AWS.
Snowflake as a SaaS offering means that maintenance isn't an issue for me.
Snowflake Analytics has been stable and reliable in my experience.
Snowflake Analytics is stable, scoring around eight point five to nine out of ten.
The Power BI team raised tickets for both Power BI and Snowflake Analytics, and their responses were very good.
Enhancements in user experience for data observability and quality checks would be beneficial, as these tasks currently require SQL coding, which might be challenging for some users.
What things you are going with to ask the support and how we manage the relationship matters a lot.
If more connectors were brought in and more visibility features were added, particularly around cost tracking in the FinOps area, it would be beneficial.
AIML-based SQL prompt and query generation could be an area for enhancement.
If it offered flexibility similar to Oracle and supported more heterogeneous data sources and database connectivity, it would be even better.
I would prefer Snowflake Analytics to improve their support response times, as sometimes the responses we receive are not very prompt and ticket assignments may not be timely.
Snowflake's pricing is on the higher side.
Snowflake lacks transparency in estimating resource usage.
Snowflake charges per query, which amounts to a very minor cost, such as $0.015 per query.
Snowflake is better and cheaper than Redshift and other cloud warehousing systems.
Snowflake Analytics is quite economical.
We had a comparison with Databricks and Snowflake a few months back, and this auto-scaling takes an edge within Snowflake; that's what our observation reflects.
I have used the Snowflake Zero-Copy Cloning feature in the past while prototyping data in lower environments. This feature is helpful as it saves a lot of time during the data replication process.
Snowflake is a data lake on the cloud where all processing happens in memory, resulting in very fast query responses.
Running a considerable query on Microsoft SQL Server may take up to thirty minutes or an hour, while Snowflake executes the same query in less than three minutes.
Snowflake Analytics supports data security with a single sign-on feature and complies with framework regulations, which is highly beneficial.
It is a data offering where I can see data lineage, data governance, and data security.
| Product | Market Share (%) |
|---|---|
| Snowflake | 16.1% |
| Snowflake Analytics | 1.5% |
| Other | 82.4% |


| Company Size | Count |
|---|---|
| Small Business | 29 |
| Midsize Enterprise | 20 |
| Large Enterprise | 57 |
| Company Size | Count |
|---|---|
| Small Business | 10 |
| Midsize Enterprise | 12 |
| Large Enterprise | 21 |
Snowflake provides a modern data warehousing solution with features designed for seamless integration, scalability, and consumption-based pricing. It handles large datasets efficiently, making it a market leader for businesses migrating to the cloud.
Snowflake offers a flexible architecture that separates storage and compute resources, supporting efficient ETL jobs. Known for scalability and ease of use, it features built-in time zone conversion and robust data sharing capabilities. Its enhanced security, performance, and ability to handle semi-structured data are notable. Users suggest improvements in UI, pricing, on-premises integration, and data science functions, while calling for better transaction performance and machine learning capabilities. Users benefit from effective SQL querying, real-time analytics, and sharing options, supporting comprehensive data analysis with tools like Tableau and Power BI.
What are Snowflake's Key Features?
What Benefits Should You Look for?
In industries like finance, healthcare, and retail, Snowflake's flexible data warehousing and analytics capabilities facilitate cloud migration, streamline data storage, and allow organizations to consolidate data from multiple sources for advanced insights and AI-driven strategies. Its integration with analytics tools supports comprehensive data analysis and reporting tasks.
Conventional data platforms and big data solutions struggle to deliver on their fundamental purpose: to enable any user to work with any data, without limits on scale, performance or flexibility. Whether you’re a data analyst, data scientist, data engineer, or any other business or technology professional, you’ll get more from your data with Snowflake.
To achieve this, we built a new data platform from the ground up for the cloud. It’s designed with a patented new architecture to be the centerpiece for data pipelines, data warehousing, data lakes, data application development, and for building data exchanges to easily and securely share governed data. The result, A platform delivered as a service that’s powerful but simple to use.
Snowflake’s cloud data platform supports a multi-cloud strategy, including a cross-cloud approach to mix and match clouds as you see fit. Snowflake delivers advantages such as global data replication, which means you can move your data to any cloud in any region, without having to re-code your applications or learn new skills.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.